

Chapter 2: Equations and Inequalities

CHAPTER ANALYSIS

1) Discriminant $\left(b^{2}-4 a c\right)$

- $b^{2}-4 a c>0: 2$ real and distinct roots
- $b^{2}-4 a c<0$: No real roots
- $b^{2}-4 a c=0: 2$ real and equal roots (1 root)

2) Making use of discriminant and real roots to identify the relationship between a line and curve

- Line is a tangent to the curve
- Line does not intersect the curve
- Line intersects the curve at 2 points

3) Solving quadratic inequalities

QUADRATICEQUATIONS ANDITS ROOTS

A quadratic equation is usually expressed in the form of $a x^{2}+b x+c=0$.

Methods to solve quadratic equations and obtain its roots (solutions):

1) Factorisation

Solving the equation gives $\boldsymbol{x}=\boldsymbol{\alpha}$ or $\boldsymbol{x}=\boldsymbol{\beta}$
2) Quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { where, } a \neq 0
$$

(This is the reason why the discriminant matters!
Can you guess why?)

IMPORTANT

Students are not allowed to assume the discriminant signature as this is a show question. Students are supposed to reach the discriminant signature on their own, hence, proving the claim of the question

Example

Show that the following has real and distinct roots for all real values of x

$$
(p+1) x^{2}+(4 p+3) x+2 p-1=0
$$

[S4 CWSS P1/2009 PRELIM Qn 9(b)]

Solution:

To show that the function has real and distinct roots

$$
\begin{aligned}
& \text { WTS: } b^{2}-4 a c>0 \\
& D=(4 p+3)^{2}-4(p+1)(2 p-1) \\
&=16 p^{2}+24 p+9-4\left(2 p^{2}+p-1\right) \\
&=16 p^{2}+24 p+9-8 p^{2}-4 p+4 \\
&=8 p^{2}+20 p+13 \\
&=8\left(p^{2}+\frac{5}{2} p+\frac{13}{8}\right) \\
&=8\left[\left(p+\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}+\frac{13}{8}\right] \\
&=8\left(p+\frac{5}{4}\right)^{2}+\frac{1}{2}
\end{aligned}
$$

$$
\text { Since }\left(p+\frac{5}{4}\right)^{2}>0
$$

$$
\begin{gathered}
8\left(p+\frac{5}{4}\right)^{2}>0 \\
8\left(p+\frac{5}{4}\right)^{2}+\frac{1}{2}>0
\end{gathered}
$$

[^0]
Discriminant of a quadratic equation

 and its roots$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Discriminant }=b^{2}-4 a c
$$

Nature of Roots	Discriminant	Graphical Representation
2 real and distinct roots	$b^{2}-4 a c>0$	
2 equal roots	$b^{2}-4 a c=0$	
No real roots	$b^{2}-4 a c<0$	

Sub the values of discriminant (positive, negative or zero) into the quadratic formula above and find out how many solutions are there (equivalent to number of roots). Note: You cannot square root a negative number, hence there is no solution.

IMPORTANT

Students are not allowed to assume the discriminant signature as this is a show question. Students are supposed to reach the discriminant signature on their own, hence, proving the claim of the question

Example

Show that the line meets the curve at 2 distinct points for all real values of k

$$
\begin{gathered}
y=5-k \\
y=x^{2}-k x
\end{gathered}
$$

[S3 SQSS P1/2011 MYE Qn 10(b) (MODIFIED)]
Solution:

$$
\begin{gathered}
y=5-k \ldots \ldots(1) \\
y=x^{2}-k x \ldots \ldots .(2)
\end{gathered}
$$

Take Equation (1) = Equation (2)

$$
\begin{aligned}
5-k & =x^{2}-k x \\
x^{2}-k x+(k-5) & =0
\end{aligned}
$$

To show that the line meets the curve

$$
\begin{aligned}
& \text { WTS: } b^{2}-4 a c>0 \\
& \begin{aligned}
D & =(-k)^{2}-4(1)(k-5) \\
& =k^{2}-4 k+20 \\
& =(k-2)^{2}-(2)^{2}+20 \\
& =(k-2)^{2}+16
\end{aligned}
\end{aligned}
$$

Since k can take any real value,

$$
(k-2)^{2}>0
$$

$$
(k-2)^{2}+16>0
$$

Hence, the line will meet the curve at 2 distinct points for all real values of k (shown)

Relationship between line and curve
Step 1: Solve the equations simultaneously by substituting the equation of oVERPGGED the line into the equation of the curve to eliminate one of the variables (make x the only unknown)
Step 2: Make one side equals to 0 and find the discriminant

SOLVING QUADRATIC INEQUALITIES

Step 1: Expand the equation and make one side equals to zero.

Step 2: Factorise the quadratic equation into this form:

$$
a(x-\alpha)(x-\beta)=0
$$

Step 3: Sketch the quadratic graph
(*Make use of the coefficient of x^{2} to identify the shape of graph*)

SOLVING QUADRATIC INEQUALITIES

Step 4: Label the \boldsymbol{x}-intercepts of the graph

Step 5: Shade the region between the curve and the \boldsymbol{x} axis and you will obtain your answer.

If you need a question example for better understanding, check out this video on Overmugged's TikTok channel: https://vt.tiktok.com/ZSFj43eEF/

CONDITIONS FOR QUADRATIC EQUATION TO BE ALWAYS POSITIVE OR ALWAYS NEGATIVE

- ALWAYS POSITIVE

1) Coefficient of x^{2}, also known as $a>0$
2) Discriminant $b^{2}-4 a c<0$

- ALWAYS NEGATIVE

1) Coefficient of x^{2}, also known as $a<0$
2) Discriminant $b^{2}-4 a c<0$

Discriminant must always be negative as there should not be any intersections between the curve and the x-axis for it to always be above or below the x-axis.

MEET THE OVERMUGGED TEAM

MEET OUR ALL-STAR TUTORS

All our tutors have between 7-13 years of teaching experience and have guided countless batches of students to excel at ' O ' Levels \& 'A' Levels.

07

LOCATIONS

We have classes across 7 locations in Singapore, with 3 main branches.

20+

TUTORS

We have a team of $20+$ tutors, each specialising in their respective subjects.

RESULTS

About 70\% of OVERMUGGED students score an A1/A2 at 'O' Levels/ 'A' Levels.

70\%

STUDENT UNDER OUR CARE

We have about 700+ students under our care which we work closely with on a week-on-week basis!

SG FASTEST GROWING TUITION BRAND
 SOME STATS

We believe in uplifting the student community!

LEADERS IN THE CHANGING EDUCATION LANDSCAPE

FEATURED ON STRAITS TIMES
Our efforts to go out of our way to support our students were captured by local new publications.

OVERMUGGED was SG first tuition center to host large scale mock exam!

Our student's needs comes first!

(TODAY 0 June 16 at 5:49 PM • ©
One Primary 6 student who is sitting mock exams told TODAY: "I feel stress didn't do any exams all the way until prelims and PSLE... I'll be unfamiliar wit

DAYONLINE.CO
Hundreds sign up for tuition centre mock exams costing u scrapping of all mid-year school exams

P6 and Sec 4 students flock to tuition centres for mock exams after scrapping of school midterms

TOA PAYOH
CLASSROOM
Conveniently located near Toa Payoh MRT

BUKIT TIMAH
Tan Kah Kee
2 min walk from Tan Kah Kee MRT.

JURONG EAST

CLASSROOM
Right beside Jurong East MRT

Upper Serangoon Road
5min walk from Kovan MRT.

CLASSROOM
Right beside Woodlands MRT

PARKWAY CENTER
Upcoming TE line in 2024.

\because
 LEARNING RESOURCES

IF YOU THOUGHT THE FREE MATERIALS ARE GOOD,
Wait till you see the resources our own students get!

Our Policy
No deposit fee.
No extra material fee.
Unlimited access to study lounge.
Unlimited snacks.
Free consultations.
Special discounts for holiday program.

TUITION RATES

'O' LEVELS
\$80/lesson
\$85/lesson (weekend)

INTEGRATED PROGRAM
\$90/lesson
\$95/lesson (weekend)
'A' LEVELS
\$100/lesson
\$105/lesson (weekend)
10% if signing up for 2 ' A ' Levels subject \& above
Fees are collected at the start of the term (every 3 months).

$$
\because 0
$$

Sign up for a free trial lesson today!

Class Schedule:

SCAN ME

Whatsapp us:

SCAN ME

[^0]: Hence, the function has real and distinct roots (shown)

