Bincto
 CHAPTER 3: SURDS

CHAPTER ANALYSIS \sqrt{x}

- Four operations on surds, including rationalizing the denominator.
- Simplifying surds.
- Solving equations involving surds.

Suris is a tonie that will he tested together with several tonics such as Dififerentiation, Inteyration.
 The ruestions tested on this tonic will always involve RATIONAISATION.

This chapter has a pre-requisite of E-Math Chapter 3: Indices.

LAWS OF INDICES

- You are expected to know Indices before starting on the topic of Surds.
- Some laws of indices are related to the 4 operations of surds ("Same Power")

Common Mistake

The following 2 statements are INCORRECT, but many students still get confused and use these 2 statements in their solutions

$$
\begin{gathered}
a^{m}+b^{m}=(a+b)^{m} \ldots \ldots(*) \\
a^{m}-b^{m}=(a-b)^{m}
\end{gathered}
$$

Proof that $\left(^{*}\right)$ is incorrect
By substituting values of $a=1, b=2$ and $m=3$

$$
\begin{gathered}
\text { LHS }=1^{3}+2^{3}=9 \\
\text { RHS }=(1+2)^{3}=27 \\
\therefore \text { LHS } \neq \text { RHS }
\end{gathered}
$$

Laws of Indices	
Same Base	$a^{m} \times a^{n}=a^{m+n}$
	$\frac{a^{m}}{a^{n}}=a^{m-n}$
	$\left(a^{m}\right)^{n}=a^{m n}$
Same Power	$a^{m} \times b^{m}=(a b)^{m}$
	$\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$
Radicals	$\sqrt[n]{a}=a^{\frac{1}{n}}$
	$a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
Others	$a^{0}=1$
	$a^{-n}=\frac{1}{a^{n}}$

4 OPERATIONS OF SURDS

- The law of multiplication and division occurs due to law of indices (same power), which explains why we can combine the base (a and b in this case) together.

> - The law of addition and subtraction involves factorising the common surd before performing addition/subtraction.

Common misconception about addition/subtraction

$$
\sqrt{3}+\sqrt{2}=\sqrt{5}
$$

Laws of Surds

Multiplication	$\sqrt{a} \times \sqrt{b}=a^{\frac{1}{2}} \times b^{\frac{1}{2}}=(a b)^{\frac{1}{2}}=\sqrt{a b}$
Division	$\sqrt{a} \div \sqrt{b}=\frac{a^{\frac{1}{2}}}{b^{\frac{1}{2}}}=\left(\frac{a}{b}\right)^{\frac{1}{2}}=\sqrt{\frac{a}{b}}$
Addition	$m \sqrt{a}+n \sqrt{a}=(m+n) \sqrt{a}$
Subtraction	$m \sqrt{a}-n \sqrt{a}=(m-n) \sqrt{a}$

RATIONALISATION OF SURDS

We rationalise surds so that we can remove the roots from the denominator since there should not be any roots in your denominators when presented as the final answer．

Case 1：When the denominator is \sqrt{a} ，we rationalise by multiplying the denominator by \sqrt{a} so that the square root will be removed． However，remember to multiply the numerator by the same surd so that the value of equation remains constant

Case 2：You rationalise the denominator by multiplying by its conjugate surd．The same rule applies here：remember to multiply the numerator by the same surd so that the value of equation remains constant．
＊The conjugate surd of $m \sqrt{a} \pm n \sqrt{b}$ will be $m \sqrt{a} \mp n \sqrt{b}$ ．＊ Reason behind is to make use of the special identity of：

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

The act of removing the roots from the denominators．There are $\mathbf{2}$ cases of rationalisation
－Case 1：Denominator of single－term surds
－Rationalise by multiplying the numerator and denominator by \sqrt{a} to get a

$$
\begin{aligned}
\frac{3}{\sqrt{12}} & =\left(\frac{3}{\sqrt{12}}\right)\left(\frac{\sqrt{12}}{\sqrt{12}}\right) \\
& =\frac{3 \sqrt{2^{2} \times 3}}{12} \\
& =\frac{3(2) \sqrt{3}}{12} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

－Case 2：Denominator of sum／difference of surds
－Rationalise by multiplying the numerator and denominator by its conjugate surd to get a rational number

$$
\begin{aligned}
\frac{1}{\sqrt{5}-2} & =\left(\frac{1}{\sqrt{5}-2}\right)\left(\frac{\sqrt{5}+2}{\sqrt{5}+2}\right) \\
& =\frac{1(\sqrt{5}+2)}{(\sqrt{5})^{2}-(2)^{2}} \\
& =\sqrt{5}+2
\end{aligned}
$$

SOLIING EQUATIONS INVOLIING SURDS

$$
\sqrt{5 x+2}-\sqrt{3 x-8}=0
$$

1) Make the equation in the form of LHS $=$ RHS.

$$
\sqrt{5 x+2}=\sqrt{3 x-8}
$$

2) Remove the square roots by applying square on both sides.

$$
5 x+2=3 x-8
$$

3) Solve the algebraic equation.

If you obtain a quadratic equation which results in 2 solutions, check for your solutions by subbing it back into the original equation (question). Reject accordingly if the answers do not match.

MEET THE OVERMUGGED TEAM

MEET OUR ALL-STAR TUTORS

All our tutors have between 7-13 years of teaching experience and have guided countless batches of students to excel at ' 0 ' Levels \& 'A' Levels.

LOCATIONS

We have classes across 7 locations in Singapore, with 3 main branches.

TUTORS

We have a team of $20+$ tutors, each specialising in their respective subjects.

RESULTS

About 70\% of OVERMUGGED students score an A1/A2 at 'O' Levels/ 'A' Levels.

STUDENT UNDER OUR CARE

We have about 700+ students under our care which we work closely with on a week-on-week basis!

SOME STATS

SG FASTEST GROWING TUITION BRAND

We believe in uplifting the student community!

OVERMUGGED, 'O' Levels Channel
6,214 subscribers

OVERMUGGED, 'A' Levels Channel
2,778 subscribers

One of SG largest Telegram student community

LEADERS INTHE
 CHANGING EDUCATION LANDSCAPE

FEATURED ON STRAITS TIMES

Our efforts to go out of our way to support our students were captured by local new publications.

OVERMUGGED was SG first tuition center to host large scale mock exam!

Our student's needs comes first!TODAY O June 16 at 5:49 PM - ©
One Primary 6 student who is sitting mock exams told TODAY: "I feel stress didn't do any exams all the way until prelims and PSLE... I'll be unfamiliar wit environment and I cannot concentrate."

TOA PAYOH
CLASSROOM
Conveniently located near Toa Payoh MRT

Kovan

Upper Serangoon Road
5 min walk from Kovan MRT.

MARINE PARADE

PARKWAY CENTER

Upcoming TE line in 2024.

BUKIT TIMAH

Tan Kah Kee

2 min walk from Tan Kah Kee MRT.

JURONG EAST

CLASSROOM

Right beside Jurong East MRT

WOODLANDS

CLASSROOM
Right beside Woodlands MRT

TAMPINES
READY IN 2024
Right beside Tampines MRT

OUR SECRET TO PRODUCE TOP RESULTS?

CONSISTENT HARD WORK, OVER A LONG PERIOD OF TIME.

We work hard consistently alongside you, week in, week out.

We grind hard when no one is watching because we know that when it comes time for exams, we will be one cut above the rest.

LEARNING RESOURCES

IF YOU THOUGHT THE FREE MATERIALS ARE GOOD,
Wait till you see the resources our own students get!

WEEKLY WORKSHEETS

Topical, Thematic, Mock Test, Mock Exam, Prelim Prep, Practical Prep

EXCLUSIVE CHEATSHEETS

Revision booklets, extra cheatsheets, Practical Assessment booklet

ACADEMIC YEAR

TERM 1: NOV - JAN

Topical Recaps
Key highlight: Christmas Party

TERM 2: FEB - APR

Topical Mastery

Key highlight: March Holiday Cohesion Program
TERM 3: MAY - JUL

Prelim/EOY Preparation

Key highlight: Mock Prelim/EOY

TERM 4: AUG - OCT

'O' Levels / 'A' Levels Preparation
Key highlight: Mock Exams, Science Practical Assessment

