

CHAPTER 4: POLYNOMIALS

CHAPTER ANALYSIS

- Multiplication and Division of Polynomials
- Use of remainder and factor theorems, including factorizing polynomials and solving cubic equations
- Use of:
- $a^3 + b^3 = (a + b)(a^2 ab + b^2)$
- $a^3 b^3 = (a b)(a^2 + ab + b^2)$

WHAT IS A POLYNOMIAL?

 If the question states that the degree of the polynomial is *n*, the highest power of the polynomial will be *n*.

Example: The degree of the polynomial is 4. Equation will be:

 $Ax^4 + Bx^3 + Cx^2 + Dx + E$

A function of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

• *n* / all powers must be a **positive integer**

Common Mistake

Some students have difficulty identifying which functions are polynomials

The following are **NOT** polynomials

 $\frac{1}{2}$ - 2x + $3x^{\frac{1}{2}}$

The power of $3x^{\frac{1}{2}}$ is not a **positive integer**

 $\frac{2}{x}\left(\frac{2}{x}\right)\left(\frac{5}{x^3}\right)$

The powers of $\frac{2}{x}$ and $\frac{5}{x^3}$ are not positive integers

Why?

Although at face value it does look like positive integers, the variable \boldsymbol{x} is in the denominator

 $\frac{2}{-}=2x^{-1}$

By indices law:

$$\frac{5}{x^3}=5x^{-3}$$

OF POLYNOMIALS

• Division of polynomials involve using long division, so do recap on those!!

Steps in Long Division:

- 1) Divide: Divide the first term of the dividend by the first term of the divisor to get the first term of the quotient.
- 2) Multiply: Multiply the entire divisor by the first term of the quotient
- 3) Subtract: Subtract the result from the dividend to get a remainder
- 4) Repeat: Repeat the process with the remainder as the new dividend until the remainder is zero or of a lower degree than the divisor.

Division Algorithm

Suppose that f(x) and g(x) are 2 polynomials where $g(x) \neq 0$. We can find 2 polynomials q(x) and r(x) such that

$$f(x) = g(x) \cdot q(x) + r(x)$$

where r(x) = 0 or degree of r(x) < degree of g(x)

Polynomial	Terminology
f(x)	Dividend
g(x)	Divisor
q(x)	Quotient
r(x)	Remainder

The degree of g(x) is always less than the degree of f(x)

$$oldsymbol{q}(oldsymbol{x})$$
 [Quotient] $oldsymbol{g}(oldsymbol{x})$ [Divisor] $oldsymbol{f}(oldsymbol{x})$ [Dividend]

r(x) [Remainder]

REMAINDER AND FACTOR THEOREM

• If we are dividing by (x - b), we will have to sub in x = b and write f(b).

*Tip: Make the bracket (x - b) to be equals to 0.

- The main idea of Remainder Theorem and Factor Theorem are the same. The only difference is that for Factor Theorem, the remainder is always equals to 0.
- As it is a factor, it will be exactly divisible, therefore leaving no remainder.

The Remainder Theorem states that when a polynomial f(x) (of degree ≥ 1) is divided by $(ax \mp b)$ where $a \neq 0$, the remainder R is given by

$$R=f\left(\pm\frac{b}{a}\right)$$

Reasoning and Methodology:

$$f(x) = (ax \mp b) \cdot q(x) + R$$

q(x) (Quotient) is a polynomial that is usually not given in questions. We want to get rid of q(x) and force the whole term to be 0 so that the only thing remaining is f(x) = R. To force $(ax \mp b) \cdot q(x)$ to be 0, we will find values of x that will cause $(ax \mp b) = 0$

$$(ax \mp b) = 0 \Longrightarrow x = \pm \frac{b}{a}$$

FACTORISATION OF POLYNOMIALS

 To determine factors of a polynomial, you can use the calculator to check.

*For Casio fx-96 SG PLUS, key in: **MODE,3,4** and key in the coefficients and constant, respectively. The calculator will solve the equation and you will be able to derive the factors from there.

*For Casio fx-97 SG PLUS, key in: **MENU,5,2,SELECT DEGREE** and key in the coefficients and constant, respectively. The calculator will solve the equation and you will be able to derive the factors from there.

<u>Example</u>

When I solve the equation using the calculator, if one of the solutions is x = 1, the factor will be (x - 1).

- Determine one of the factors of f(x) using "trial and error"
 - if more factors can be determined using "trial and error", then perform this method for the other factors as well
 - Although the method of "trial and error" is most typically frowned upon, there is a smart way
 to perform this "trial and error" method
 - * Key into the calculator the polynomial to check for all the factors
 - ∗ Choose one of the factors that gives a beautiful solution (Z or Q) and present that factor as the "trialed" factor

Presentation of solutions

Follow the following template to show the smart "trial and error".

Let the factor be α and

$$f(x) = x^3 - 2x^2 - 5 + 6$$

- Claim that x is the factor
- Show that the substitution results in 0

$$f(\alpha) = (\alpha)^3 - 2(\alpha)^2 - 5(\alpha) + 6 = 0$$

Let $x = \alpha$

- Write a concluding statement

Hence, by the factor theorem, $(x - \alpha)$ is a factor

FACTORISATION OF POLYNOMIALS

Once we have derived one of the factors of the polynomials, Step 1: You will "let (x - 1) be a factor" and use Factor Theorem to prove that remainder is equals to 0. Step 2: Find the remaining factors using either of the TWO methods below. Method 1: Apply Long Division, using $f(x) \div factor found in step 1$. Method 2: Comparison Method. $f(x) = (x - 1)(Ax^2 + Bx + C)$, whereby f(x) is the polynomial you have. *TIP: Always start by comparing the highest power and the constant. You will be able to derive A and C.* Step 3: Factorise the quadratic equation found in Step 2 into two brackets. *Step 3 is applicable regardless of the method used in Step 2.*

SOLVING OF POLYNOMIALS

• Once we have derived all the factors of the polynomials, express it in the form of 3 brackets.

Example:

$$f(x) = 2x^3 - 11x^2 - x + 30 = (2x + 3)(x - 5)(x - 2)$$

Since f(x) = 0, (2x + 3)(x - 5)(x - 2) = 0.

Therefore, the solutions are : $x = \frac{3}{2}$, x = 5 or x = 2

Tip: You can check your answers by using the calculator. Method can be found in Page 6.

CUBIC IDENTITIES

Example:

 $27x^{3} - 64y^{3}$ $= (3x)^{3} - (4y)^{3}$ $= (3x - 4y)(9x^{2} + 12xy + 16y^{2})$

*Take note: Cubic identity is not the same as quadratic identity, it is *ab* in cubic equation instead of **2***ab* in quadratic equation.

Algebraic Identities

Quadratic Identities [E-Math]

 $(a + b)^2 = (a^2 + 2ab + b^2)$ $(a - b)^2 = (a^2 - 2ab + b^2)$ $a^2 - b^2 = (a + b)(a - b)$

Cubic Identities [*NEW*]

 $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

MEET THE OVERMUGGED TEAM

MEET OUR ALL-STAR TUTORS

All our tutors have between **7-13 years of teaching experience** and have guided countless batches of students to excel at 'O' Levels & 'A' Levels.

UNLOCK YOUR FULL POTENTIAL.

LOCATIONS

We have classes across 7 locations in Singapore, with **3 main branches**.

TUTORS

We have a team of 20+ tutors, each specialising in their respective subjects.

RESULTS

About **70%** of OVERMUGGED students score an A1/A2 at 'O' Levels/ 'A' Levels.

700+

70%

STUDENT UNDER OUR CARE

We have about 700+ students under our care which we work closely with on a week-on-week basis!

SG FASTEST GROWING TUITION BRAND

We believe in uplifting the student community!

SOME STATS

OVERMUGGED, 'O' Levels Channel

6,214 subscribers

OVERMUGGED, 'A' Levels Channel 2,778 subscribers

One of SG largest Telegram student community

LEADERS IN THE CHANGING **EDUCATION** LANDSCAPE

FEATURED ON STRAITS TIMES

Our efforts to go out of our way to support our students were captured by local new publications.

OVERMUGGED was SG first tuition center to host large scale mock exam!

Our student's needs comes first!

TODAY 📀 June 16 at 5:49 PM · 🚱

One Primary 6 student who is sitting mock exams told TODAY: "I feel stress didn't do any exams all the way until prelims and PSLE... I'll be unfamiliar wit environment and I cannot concentrate."

TODAYONLINE.COM

Hundreds sign up for tuition centre mock exams costing u scrapping of all mid-year school exams

P6 and Sec 4 students flock to tuition centres for mock exams after scrapping of school midterms

fulcan Post

ed launched a tuition subscription plan for 'O' Levels subjects to make education more affordable and accessible, and has achieved a six-figure revenue in its first yea

Many in Primary 6 and Secondary 4 seel o build experience ahead of national exar

OUR LOCATIONS

BUKIT TIMAH Tan Kah Kee

2 min walk from Tan Kah Kee MRT.

TOA PAYOH CLASSROOM

Conveniently located near Toa Payoh MRT

JURONG EAST CLASSROOM Right beside Jurong East MRT

Kovan Upper Serangoon Road 5min walk from Kovan MRT.

WOODLANDS CLASSROOM

Right beside Woodlands MRT

MARINE PARADE PARKWAY CENTER Upcoming TE line in 2024.

TAMPINES READY IN 2024 Right beside Tampines MRT

OUR SECRET TO PRODUCE TOP RESULTS?

CONSISTENT HARD WORK, OVER A LONG PERIOD OF TIME.

We work hard consistently alongside you, week in, week out.

We grind hard when no one is watching because we know that when it comes time for

exams, we will be one cut above the rest.

LEARNING RESOURCES

IF YOU THOUGHT THE FREE MATERIALS ARE GOOD,

Wait till you see the resources our own students get!

WEEKLY WORKSHEETS

Topical, Thematic, Mock Test, Mock Exam, Prelim Prep, Practical Prep

WELFARE, ALL DAY EVERYDAY

NEED FOOD TO THINK Unlimited snack shelf

Our Policy

No deposit fee. No extra material fee. Unlimited access to study lounge. Unlimited snacks. Free consultations. Special discounts for holiday program.

'O' LEVELS

\$80/lesson
\$85/lesson (weekend)

INTEGRATED PROGRAM

\$90/lesson \$95/lesson (weekend)

'A' LEVELS

\$100/lesson
\$105/lesson (weekend)
10% if signing up for 2 'A' Levels subject & above

Fees are collected at the start of the term (every 3 months).

ACADEMIC YEAR

TERM 1: NOV – JAN

Topical Recaps Key highlight: Christmas Party

TERM 2: FEB – APR

Topical Mastery Key highlight: March Holiday Cohesion Program

TERM 3: MAY – JUL

Prelim/EOY Preparation Key highlight: Mock Prelim/EOY

TERM 4: AUG – OCT

'O' Levels / 'A' Levels Preparation Key highlight: Mock Exams, Science Practical Assessment

<u>Any enquiries?</u> Whatsapp: 8770 2540 Email: <u>overmugged@gmail.com</u> Website: <u>www.overmugged.com</u> IG/Tiktok: @overmugged

GGED

Sign up for a free trial lesson today!

Class Schedule:

Whatsapp us:

