
(1)
a

$$
8
$$

8

$$
x \geq
$$

$$
18
$$

$$
4
$$

$$
2
$$

\qquad
8

CHAPTER ANALYSIS

- Multiplication and Division of Polynomials
- Use of remainder and factor theorems, including factorizing polynomials and solving cubic equations
- Use of:
- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

WHAT IS A POLYNOMIAL?

- If the question states that the degree of
the polynomial is n, the highest power of

If the question states that the degree of
the polynomial is n, the highest power of the polynomial will be n.

Example: The degree of the polynomial is 4 .
Equation will be:

$$
A x^{4}+B x^{3}+C x^{2}+D x+E
$$

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

- n / all powers must be a positive integer

Common Mistake

Some students have difficulty identifying which functions are polynomials

The following are NOT polynomials

$$
x^{2}-2 x+3 x^{\frac{1}{2}}
$$

The power of $3 x^{\frac{1}{2}}$ is not a positive integer

$$
x^{2}\left(\frac{2}{x}\right)\left(\frac{5}{x^{3}}\right.
$$

The powers of $\frac{2}{x}$ and $\frac{5}{x^{3}}$ are not positive integers

Why?

wity

Although at face value it does look like positive integers, the variable x is in the denominator By indices law:

$$
\frac{2}{x}=2 x^{-1} \quad \frac{5}{x^{3}}=5 x^{-3}
$$

power $3 x$ is not a positiveger
\qquad

Suppose that $\boldsymbol{f}(\boldsymbol{x})$ and $\boldsymbol{g}(\boldsymbol{x})$ are $\mathbf{2}$ polynomials where $\boldsymbol{g}(\boldsymbol{x}) \neq \mathbf{0}$. We can find $\mathbf{2}$ polynomials $\boldsymbol{q}(\boldsymbol{x})$ and $\boldsymbol{r}(\boldsymbol{x})$ such that

$$
f(x)=g(x) \cdot q(x)+r(x)
$$

where $\boldsymbol{r}(\boldsymbol{x})=\mathbf{0}$ or degree of $\boldsymbol{r}(\boldsymbol{x})<$ degree of $\boldsymbol{g}(\boldsymbol{x})$

Polynomial	Terminology
$f(x)$	Dividend
$g(x)$	Divisor
$\boldsymbol{q}(x)$	Quotient
$\boldsymbol{r}(\boldsymbol{x})$	Remainder

The degree of $\boldsymbol{g}(\boldsymbol{x})$ is always less than the degree of $\boldsymbol{f}(\boldsymbol{x})$

$$
\begin{aligned}
& \boldsymbol{q}(\boldsymbol{x}) \text { [Quotient] } \\
& \boldsymbol{g}(\boldsymbol{x})[\text { Divisor }] \boldsymbol{f}(\boldsymbol{x}) \text { [Dividend] }
\end{aligned}
$$

- Division of polynomials involve using long division, so do recap on those!!

Steps in Long Division:

1) Divide: Divide the first term of the dividend by the first term of the divisor to get the first term of the quotient.
2) Multiply: Multiply the entire divisor by the first term of the quotient
3) Subtract: Subtract the result from the dividend to get a remainder
4) Repeat: Repeat the process with the remainder as the new dividend until the remainder is zero or of a lower degree than the divisor.
.

The Remainder Theorem states that when a polynomial $f(x)$ (of degree ≥ 1) is divided by
The Remainder Theorem states that when a poly
$(a \times \bar{\mp} b)$ where $a \neq 0$, the remainder R is given by

$$
y
$$

\qquad
\qquad
$q(x)$ (Quotient) is a polynomial that is usually not given in questions. We want to get rid of
$q(x)$ and force the whole term to be 0 so that the only thing remaining is $f(x)=R$. To force
$q(x)$ (Quotient) is a polynomial that is usually not given in questions. We want to get rid of
$q(x)$ and force the whole term to be so that the only thing remaining is $f(x)=R$. To force
Pop

$$
\downarrow
$$

$$
R=f\left(\pm \frac{b}{a}\right)
$$

$$
f(x)=(a x \bar{\mp} b) \cdot q(x)+R
$$ $(a x \mp b) \cdot q(x)$ to be 0 , we will find values of x that will cause $(a x \mp b)=0$

$$
(a x \bar{\mp} b)=0 \Rightarrow x= \pm \frac{b}{a}
$$

$$
x_{0}
$$

\square
.

- If we are dividing by $(x-b)$, we will have to sub in $x=b$ and write $f(b)$.
*Tip: Make the bracket $(x-b)$ to be equals to 0 .
- The main idea of Remainder Theorem and Factor Theorem are the same. The only difference is that

REMAINDER AND FACTOR THEOREM

-

\qquad

```
\(\square\)
```

\qquad
for Factor Theorem, the remainder is always
equals to 0 .

- As it is a factor, it will be exactly divisible, therefore
leaving no remainder.
for Factor Theorem, the remainder is always
equals to 0 .
- As it is a factor, it will be exactly divisible, therefore
leaving no remainder.
for Factor Theorem, the remainder is always
equals to 0 .
- As it is a factor, it will be exactly divisible, therefore
leaving no remainder.
for Factor Theorem, the remainder is always
equals to 0 .
- As it is a factor, it will be exactly divisible, therefore
leaving no remainder.

*Ti: Make the bracket $(x-b)$ to be equals to 0.
$4-\cdots)^{4}+$

7

.

- Determine one of the factors of $f(x)$ using "trial and error"
- if more factors can be determined using "trial and error", then perform this method for the other factors as well
- Although the method of "rial and error" is most typically frowned upon, there is a smart way to perform this "trial and error" method
* Key into the calculator the polynomial to check for all the factors
* Choose one of the factors that gives a beautiful solution (Z or Q) and present that factor as the "trialed" factor

Presentation of solutions

Follow the following template to show the smart "trial and error".

Let the factor be α and

$$
f(x)=x^{3}-2 x^{2}-5+6
$$

- Claim that x is the factor

$$
\text { Let } x=\alpha
$$

- Show that the substitution results in 0

$$
f(\alpha)=(\alpha)^{3}-2(\alpha)^{2}-5(\alpha)+6=0
$$

- Write a concluding statement

Hence, by the factor theorem, $(x-\alpha)$ is a factor

FACTORISATION OF POLYNOMIALS

- Once we have derived one of the factors of the polynomials,

Step 1: You will "let $(x-1)$ be a factor" and use Factor Theorem to prove that remainder is equals to 0 .
Step 2: Find the remaining factors using either of the TWO methods below.
Method 1: Apply Long Division, using $f(x) \div$ factor found in step 1.
Method 2: Comparison Method.
$f(x)=(x-1)\left(A x^{2}+B x+C\right)$, whereby $f(x)$ is the polynomial you have.
TIP: Always start by comparing the highest power and the constant. You will be able to derive A and C.
*TIP: Always start by comparing the highest power and the constant. You w
Step 3: Factorise the quadratic equation found in Step 2 into two brackets.
Step 3 is applicable regardless of the method used in Step 2.
\rightarrow
.
I!
 (

$-v^{-}$
owe that remainder is equals to 0. \qquad
 t ir ne $1=$ (
 4.4
.©

-
 r

MEET THE OVERMUGGED TEAM

MEET OUR ALL-STAR TUTORS

All our tutors have between 7-13 years of teaching experience and have guided countless batches of students to excel at ' 0 ' Levels \& 'A' Levels.

LOCATIONS

We have classes across 7 locations in Singapore, with 3 main branches.

TUTORS

We have a team of $20+$ tutors, each specialising in their respective subjects.

RESULTS

About 70\% of OVERMUGGED students score an A1/A2 at 'O' Levels/ 'A' Levels.

STUDENT UNDER OUR CARE

We have about 700+ students under our care which we work closely with on a week-on-week basis!

SOME STATS

SG FASTEST GROWING TUITION BRAND

We believe in uplifting the student community!

OVERMUGGED, 'O' Levels Channel
6,214 subscribers

OVERMUGGED, 'A' Levels Channel
2,778 subscribers

One of SG largest Telegram student community

LEADERS IN THE
 CHANGING EDUCATION LANDSCAPE

FEATURED ON STRAITS TIMES

Our efforts to go out of our way to support our students were captured by local new publications.

OVERMUGGED was SG first tuition center to host large scale mock exam!

Our student's needs comes first!TODAY O June 16 at 5:49 PM - ©
One Primary 6 student who is sitting mock exams told TODAY: "I feel stress didn't do any exams all the way until prelims and PSLE... I'll be unfamiliar wit environment and I cannot concentrate."

TOA PAYOH
CLASSROOM
Conveniently located near Toa Payoh MRT

Kovan

Upper Serangoon Road
5 min walk from Kovan MRT.

MARINE PARADE

PARKWAY CENTER

Upcoming TE line in 2024.

BUKIT TIMAH

Tan Kah Kee

2 min walk from Tan Kah Kee MRT.

JURONG EAST

CLASSROOM

Right beside Jurong East MRT

WOODLANDS

CLASSROOM
Right beside Woodlands MRT

TAMPINES
READY IN 2024
Right beside Tampines MRT

OUR SECRET TO PRODUCE TOP RESULTS?

CONSISTENT HARD WORK, OVER A LONG PERIOD OF TIME.

We work hard consistently alongside you, week in, week out.

We grind hard when no one is watching because we know that when it comes time for exams, we will be one cut above the rest.

LEARNING RESOURCES

IF YOU THOUGHT THE FREE MATERIALS ARE GOOD,
Wait till you see the resources our own students get!

WEEKLY WORKSHEETS

Topical, Thematic, Mock Test, Mock Exam, Prelim Prep, Practical Prep

EXCLUSIVE CHEATSHEETS

Revision booklets, extra cheatsheets, Practical Assessment booklet

ACADEMIC YEAR

TERM 1: NOV - JAN

Topical Recaps
Key highlight: Christmas Party

TERM 2: FEB - APR

Topical Mastery

Key highlight: March Holiday Cohesion Program
TERM 3: MAY - JUL

Prelim/EOY Preparation

Key highlight: Mock Prelim/EOY

TERM 4: AUG - OCT

'O' Levels / 'A' Levels Preparation
Key highlight: Mock Exams, Science Practical Assessment

