

MASTERY

- Conceptually simple chapter, but can be deceivingly difficult and complicated
- 3 key concepts

CHAPTER ANALYSIS

- Concepts usually tested as a stand-alone topic
- Easy to make careless mistakes if not careful i.e. under/double counting

- High overall weightage
- Tested consistently every year
- Typically, an 8 m question, 1-2 questions in one of the papers

Probability

Possibility Diagram \& Tree Diagram
Addition \& Multiplication Laws

Probability

Branch of Mathematics that deals with calculating the likelihood of a given event's occurrence, always expressed as a number between $\mathbf{0}$ and $\mathbf{1}$

$$
\underbrace{\mathrm{P})(\text { rolling a } 6 \text { on a fair dice })}_{\text {Event's occurrence }}=\frac{\mathbf{1}}{\mathbf{6}}
$$

Calculate probabilities using the following expression:
$P($ Event $)=\frac{\text { Number of favourable outcomes }}{\text { Total number of possible outcomes }}$

Possibility Diagram

Diagram which shows all possible outcomes of an experiment, usually used where each outcome is equally likely to happen

Example: Sum of 2 dices thrown

First Dice

Take note:

Probability of every completed branch must add up to 1

Common Mistake / Examination Phrase:

" ... taken out of the bag without replacement ... "
This means that the object is taken out of the bag, and not placed back inside, this in-turn will change the outcome of the resultant probability

EX: $\mathbf{5}$ red balls out of $\mathbf{1 0}$ balls, $\mathbf{2}$ balls taken out without replacement

Tree Diagram

Each of the $\boldsymbol{n}_{\mathbf{1}}$ ways to completing the first outcome is represented as the branch of the tree diagram

Each of the ways to completing the second outcome is represented as \boldsymbol{n}_{2} branches from the ends of the original branches and so on...

Example:

Addition \& Multiplication Laws

1. Addition Law

Applies for 2 or more mutually exclusive events. When 2 events are mutually exclusive, it means that they cannot happen at the same time

$$
\mathbf{P}(\mathbf{A} \text { or } B)=P(\mathbf{A} \cup B)=P(A)+P(B)
$$

2. Multiplication Law

Applies for 2 or more independent events. When 2 events are independent, it means that the occurrence of one of them has no influence on the occurrence of the other

$$
\mathbf{P}(\mathbf{A} \text { and } B)=\mathbf{P}(\mathbf{A} \cap B)=P(A) \times P(B)
$$

IG handle:
@overmugged

Join our telegram channel:
@overmugged

Need help?
ONG KAI WEN
(Private tutor with 4 years of experience)
Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

97216433
(Whatsapp)
The crash courses will begin in June 2021 and last till Oct 2021.
Pre-register now on our website and secure your slots!

