

THE ABOUT

MASTERY

- Conceptually simple chapter, but can be deceivingly difficult and complicated
- 3 key concepts

CHAPTER ANALYSIS

EXAM

- Concepts usually tested as a stand-alone topic
- Easy to make careless mistakes if not careful i.e. under/double counting

- High overall weightage
- Tested consistently every year
- Typically, an 8m question, 1-2 questions in one of the papers

KEY CONCEPT

Probability Possibility Diagram & Tree Diagram Addition & Multiplication Laws

Unique Properties of Probabilities					
Event	Probability				
Sample space consisting of <i>N</i> possible outcomes that are equally likely	$\frac{1}{N}$				
Outcome of an event is not possible	0				
Outcome of an event is definitely going to happen	1				

Probability

Branch of Mathematics that deals with calculating the likelihood of a given event's occurrence, always expressed as a number between ${\bf 0}$ and ${\bf 1}$

Probability of Probability of Probability
$$\frac{P(\text{rolling a 6 on a fair dice})}{P(\text{rolling a 6 on a fair dice})} = \frac{1}{6}$$

Calculate probabilities using the following expression:

$$P(Event) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ possible\ outcomes}$$

Possibility Diagram

Diagram which shows all possible outcomes of an experiment, usually used where each outcome is equally likely to happen

Example: Sum of 2 dices thrown

First Dice

Second Dice

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Take note:

Probability of every completed branch must add up to 1

Common Mistake / Examination Phrase:

" ... taken out of the bag without replacement ... "

This means that the object is taken out of the bag, and not placed back inside, this in-turn will change the outcome of the resultant probability

EX: 5 red balls out of 10 balls, 2 balls taken out without replacement

$$\begin{array}{c|c}
5 \\
\hline
10
\end{array}$$
Red ball

Why
$$\frac{4}{9}$$
?

Since there is no replacement, and the first ball taken out is red, there are 9 balls remaining, 4 of which are red

Tree Diagram

Each of the n_1 ways to completing the first outcome is represented as the branch of the tree diagram

Each of the ways to completing the second outcome is represented as n_2 branches from the ends of the original branches and so on...

Example:

Addition & Multiplication Laws

1. Addition Law

Applies for 2 or more <u>mutually exclusive</u> events. When 2 events are mutually exclusive, it means that they cannot happen at the same time

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$$

2. Multiplication Law

Applies for 2 or more <u>independent</u> events. When 2 events are independent, it means that the occurrence of one of them has no influence on the occurrence of the other

$$P(A \text{ and } B) = P(A \cap B) = P(A) \times P(B)$$

For more notes & learning materials, visit:

www.overmugged.com

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The 4 hour session focuses on going through key concepts and identifying commonly tested questions!

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

Need help?

ONG KAI WEN
(Private tutor with 4 years of experience)

9721 6433 (Whatsapp)

@ongkw28 (telegram username)

