

MASTERY

- Relatively straight forward chapter
- 2 key concepts
- Concepts usually tested as a stand-alone topic
- Easy to make careless mistakes if not weary on the placement of matrices
- High overall weightage
- Tested consistently every year
- Typically, a 10 m question, 1 question in one of the papers

Matrices

Operations on Matrices

Special Matrices

Name	Definition	Example
Column	Only 1 column	$\left[\begin{array}{l}\mathbf{1} \\ 2\end{array}\right]$
Row	Only 1 row	$\left[\begin{array}{ll}\mathbf{1} & \mathbf{2}\end{array}\right]$
Square	$\left.\begin{array}{ll}\text { Same number of rows and columns } \\ \mathbf{3} & \mathbf{1} \\ \hline\end{array}\right]$	
Zero	$\left.\begin{array}{ll}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right]$	
Identity	Elements are all zeros upper left-hand corner to the bottom right-hand corner are 1s and the rest are 0s	$\left[\begin{array}{ll}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1}\end{array}\right]$

Knowledge on the usage of the Zero and Identity matrices is not
necessary in ' O ' Level Mathematics

Matrices

A two-dimensional array of numbers or expressions arranged in a set of rows and columns within brackets

Number of rows and columns are known as the order / dimension, the number of rows is specified first, followed by the columns

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

Order 2×3

Positions of elements in the matrix can be defined as $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}$ where \boldsymbol{a} is the element, \boldsymbol{i} is the row number, and \boldsymbol{j} is the column number

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Take Note:

In order to perform any of the Operations of Matrices, the matrices MUST have the same order / dimension

When attempting such operations, map each element accurately before applying the operation

$$
\begin{gathered}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
A+B=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
\end{gathered}
$$

Take Note:

$$
\begin{gathered}
A-B \neq B-A \\
A B \neq B A
\end{gathered}
$$

Be careful of the way the matrices are ordered as the solution is dependent on the ordering

Operation on Matrices

1. Matrix Addition

Process of adding the corresponding elements of two or more matrices of the SAME order

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \\
& A+B=\left[\begin{array}{ll}
1+2 & 2+3 \\
3+4 & 4+5
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 5 \\
7 & 9
\end{array}\right]
\end{aligned}
$$

2. Matrix Subtraction

Process of subtracting the corresponding elements of two or more matrices of the SAME order

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \\
& A-B=\left[\begin{array}{ll}
2-2 & 4-3 \\
6-4 & 8-5
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

More information on Matrix Multiplication
How to determine the order of the resultant matrix?

$$
\begin{aligned}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right] & B=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right] \\
2 & \times 3
\end{aligned}
$$

Ensure that the column of the first matrix and the row of the second matrix are the same

The order of the resultant matrix will be the row of the first matrix and the column of the second matrix

Hence, the order of $\boldsymbol{A B}$ is $\mathbf{2 \times 2}$

Operation on Matrices

3. Scalar Multiplication of Matrices

Process of multiplying each element of a matrix by a scalar

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
2 A & =\left[\begin{array}{ll}
1(2) & 2(2) \\
3(2) & 4(2)
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
\end{aligned}
$$

4. Matrix Multiplication

Process of multiplying two or more matrices to obtain a single matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad B=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \\
A B=\left[\begin{array}{ll}
a_{11}\left(b_{11}\right)+a_{12}\left(b_{21}\right) & a_{11}\left(b_{12}\right)+a_{12}\left(b_{22}\right) \\
a_{21}\left(b_{11}\right)+a_{22}\left(b_{21}\right) & a_{21}\left(b_{22}\right)+a_{22}\left(b_{22}\right)
\end{array}\right] \\
=\left[\begin{array}{ll}
1(2)+2(4) & 1(3)+2(5) \\
3(2)+4(4) & 3(3)+4(5)
\end{array}\right] \\
=\left[\begin{array}{ll}
10 & 13 \\
22 & 29
\end{array}\right]
\end{gathered}
$$

IG handle:
@overmugged

Join our telegram channel:
@overmugged

Need help?
ONG KAI WEN
(Private tutor with 4 years of experience)
Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

97216433
(Whatsapp)
The crash courses will begin in June 2021 and last till Oct 2021.
Pre-register now on our website and secure your slots!

