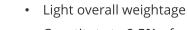


"What one man calls God, another calls the laws of physics."

-Nikola Tesla

TOPIC 1: MEASUREMENTS

CHAPTER ANALYSIS



TIME

- Relatively easy chapter
- 2 **basic** concepts, 2 **key** concepts
- Basic: SI Units & Pre-fixes, Scalar & Vector
 Key: Vernier Caliper, Micrometer screw gauge

- Usually tested in MCQs
- Fundamental for understanding physics units and calculations

• Constitute to **0.5%** of marks for past 5 year papers

BASICS

SI UNITS

LengthImetremMassmkilogramkgTimetsecondsTemperatureTKelvinKElectric currentIampereAAmount of substancenmolemol	Base Quantity	Symbol	SI Unit	Symbol for SI Unit
TimetsecondsTemperatureTKelvinKElectric currentIampereA	Length	I	metre	m
Temperature T Kelvin K Electric current I ampere A	Mass	m	kilogram	kg
Electric current I ampere A	Time	t	second	S
	Temperature	Т	Kelvin	К ———
Amount of substance n mole mol	Electric current	Ι	ampere	А
	Amount of substance	n	mole	mol

More for chemistry

Standard form: a x 10ⁿ For eg, 73000 = 7.3 x 10⁴

How to 'remember'	Base Quantity	Symbol	Magnitude	Numerical
Game apps are 'GB'	Giga	G	10 ⁹	1 000 000 000
Pictures are in 'MB'	Mega	Μ	10 ⁶	1 000 000
Rice is in 'kg'	k ilo	k (small 'k')	10 ³	1 000
1 'deci'mal point	d eci	d	10 ⁻¹	÷ 10
1 c m = ÷100 of 1m	c enti	C	10 ⁻²	÷ 100
1 m m = ÷10 of 1cm	m illi	m	10 ⁻³	÷ 1 000
'micro'scope (small particle)	micro	μ (not u)	10 ⁻⁶	÷ 1 000 000
lronman suit is 'nano'-tech, really tiny particles	nano	n	10 ⁻⁹	÷ 1 000 000 000

PREFIXES

*Tip: Increase by ^3

BASICS

Not a difficult concept, but an important one.

But can you even name 5 of each?=)

TWO PHYSICAL QUANTITIES SCALAR QUANTITIES VECTOR QUANTITIES

KEY CONCEPT

SCALAR QUANTITY

A scalar is a physical quantity that has magnitude only.

Examples: Distance Speed Time Mass Volume Density Energy Pressure

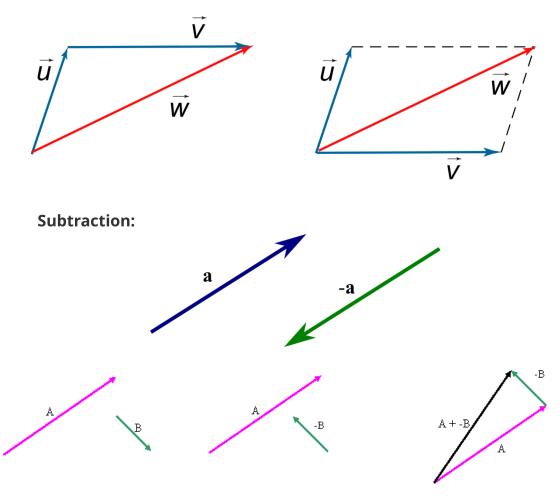
VECTOR QUANTITY

A vector quantity is a physical quantity that have both **magnitude &** direction.

Examples:

Displacement Velocity Acceleration Weight Force

*To learn more in next chapter, 'Kinematics'


VECTOR QUANTITY

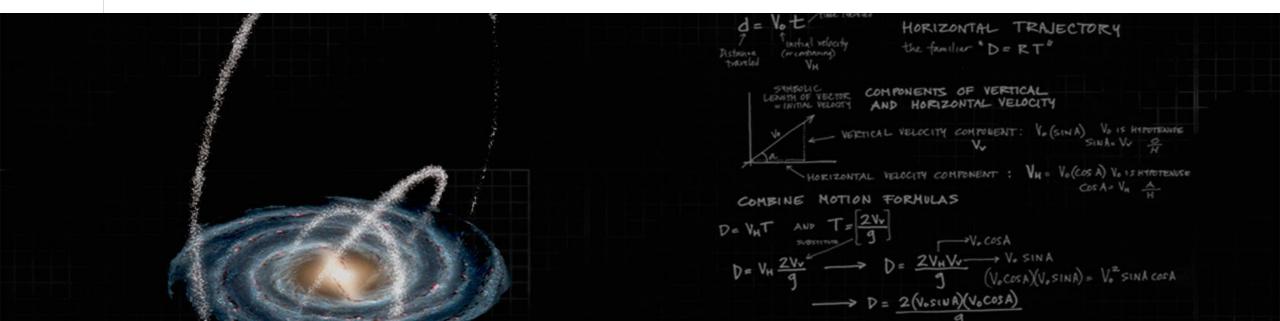
A vector quantity is a physical quantity that have both **magnitude &** direction.

Drawing of vectors

A **vector** quantity can also be represented in a graphical form.

Addition:

Don't worry too much, you will have a E-math chapter dedicated to this!

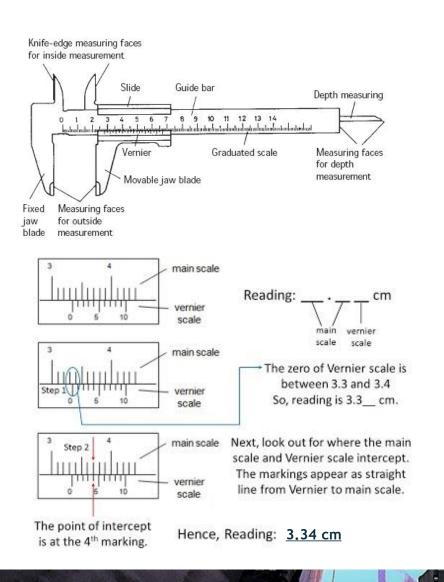

Examples: Displacement Velocity Acceleration Weight Force

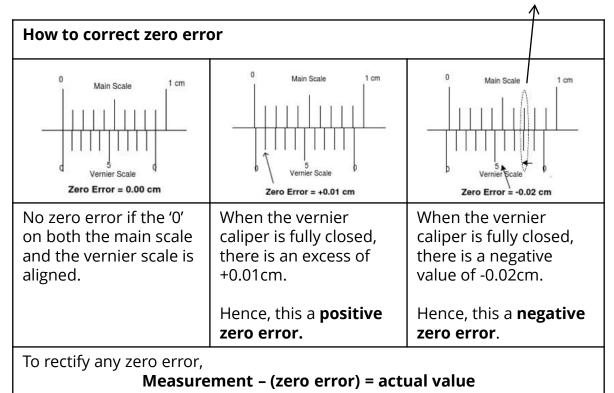
Two new instruments. Know the difference.

Zero errors, simple math.

TWO INSTRUMENTS VERNIER CALIPER MICROMETER SCREW GAUGE

KEY CONCEPT




Zero error

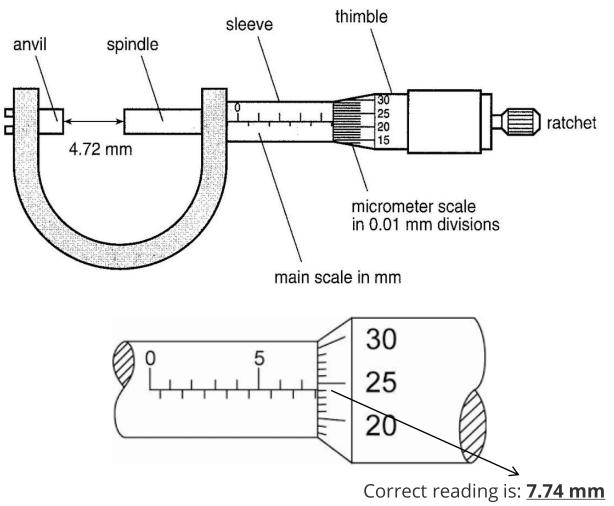
For **negative zero error**, read from the back.

Zero error here is not 0.08cm, but -0.02cm.

VERNIER CALIPER

Positive zero error:

Haven't even measure, there's already a reading. **Subtract** that extra value away.


Negative zero error:

Haven't even measure, negative value already? **Plus** in the necessary value to make up for it.

For negative zero error, read

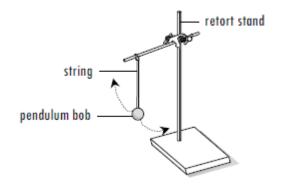
from the back.

MICROMETER SCREW GAUGE

Zero error Zero error here is not 0.46mm, but **-0.04mm**. *Micrometer = _.__ mm (answer in millimeter) How to correct zero error 0-No zero error if the '0' When the micrometer When the micrometer on both the main scale is fully closed, there is is fully closed, there is a and the thimble scale is an excess of +0.02mm. value of -0.04mm. aligned. Hence, this a **positive** Hence, this a **negative** zero error. zero error. To rectify any zero error,

Measurement – (zero error) = actual value

Positive zero error:


Haven't even measure, there's already a reading. **Subtract** that extra value away.

Negative zero error:

Haven't even measure, negative value already? **Plus** in the necessary value to make up for it.

PENDULUM BOB EXPERIMENT

DARRELL ER (COPYRIGHTED) ©

Commonly tested question

1) Why do we have to take reading for 20 oscillations and do it multiple times?

During the starting and the stopping of the stopwatch, there is **human reaction time**. By increasing the number of oscillations and taking the average of the readings, we **reduce** the significance of that **random error** and obtain a more accurate value as a result.

The pendulum bob also starts to sway after 20 oscillations, hence 20 oscillations is an ideal number.

2) Does increasing the mass of the pendulum bob/ angle of swing affect the oscillation time?

No, the mass of the pendulum bob does not affect the time taken for the oscillation. Only the **length** of the string affects the time taken for the oscillation.

Similarly, the angle of swing of the pendulum has no effect on the time as well. (*Ideally, an angle of 5 degree is optimal for stability.*)

For more notes & learning materials, visit: <u>www.overmugged.com</u>

'O' levels crash course program

Professionally designed crash course to help you get a **condensed revision** before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our <u>website</u> and secure your slots!

III

OVERMUGGED

Join our telegram channel: <u>@overmugged</u>

Darrell Er (Private tutor with **8 years** of experience)

8777 0921 (Whatsapp)

@DarrellEr
(telegram username)

