

CHAPTER ANALYSIS

- Heavy memorising
- 3 key concepts

EXAM

- Always tested
- Typical format is a flowchart question which involves backtracking to identify ions

- Medium overall weightage
- Constitute to **3.5%** of marks for past 5 year papers

QUALITATIVE ANALYSIS TEST FOR CATIONS TEST FOR ANIONS TEST FOR GASES

TEST FOR CATIONS

		Cation	Reaction with NaOH (aq) (strong alkaline)	Reaction with NH ₃ (aq) (weak alkaline)
	BLUE	Copper(II) Cu ²⁺	Forming blue precipitate of Cu(OH) ₂ Precipitate is insoluble in excess NaOH	Forming blue precipitate of $Cu(OH)_2$ Precipitate dissolves in excess NH_3 to give dark blue complex ion
	GREEN	lron(II) Fe²+	Forming green precipitate of Fe(OH) ₂ Precipitate is insoluble in excess NaOH	Forming green precipitate of Fe(OH) ₂ Precipitate is insoluble in excess NH ₃
	DDISH ROWN	Iron(III) Fe ³⁺	Forming reddish-brown precipitate of Fe(OH) ₃ Precipitate is insoluble in excess NaOH	Forming reddish-brown precipitate of $Fe(OH)_3$ Precipitate is insoluble in excess NH_3
		Calcium Ca ²⁺	Forming white precipitate of Ca(OH) ₂ Precipitate is insoluble in excess NaOH	No observable reaction
amphote and is abl		Lead(II) Pb ²⁺	Forming white precipitate of Pb(OH) ₂ Precipitate dissolves in excess NaOH to give colourless solution	Forming white precipitate of Pb(OH) ₂ Precipitate is insoluble in excess NH ₃
	alkaline to	Zinc Zn ²⁺	Forming white precipitate of Zn(OH) ₂ Precipitate dissolves in excess NaOH to give colourless solution	Forming white precipitate of $Zn(OH)_2$ Precipitate dissolves in excess NH_3 to give colourless solution
		Ammonium NH ₄ +	No precipitate formed Warming the solution produces pungent ammonia gas which turns moist red litmus blue	No observable reaction

TEST FOR ANIONS

	Anions	Test	Observation
	Carbonate CO ₃ ²⁻	Add dilute H_2SO_4 and bubble gas produced through limewater. (Any other suitable dilute acid can be used.) 2H ⁺ (aq) + CO ₃ ²⁻ (aq) \rightarrow CO ₂ (g) + H ₂ O (l)	Bubbles of CO_2 gas produced which gives a white precipitate of $CaCO_3$ in limewater.
We are adding reagents with cations	Sulfate SO ₄ ²⁻	Add dilute HNO ₃ , followed by adding Ba(NO ₃) ₂ solution. Ba ²⁺ (aq) + SO ₄ ²⁻ (aq) \rightarrow BaSO ₄ (s)	A white precipitate of BaSO ₄ is formed.
that can form an insoluble salt with the anion.	Chloride Cl ⁻	Add dilute HNO ₃ , followed by adding AgNO ₃ solution. Ag ⁺ (aq) + Cl ⁻ (aq) \rightarrow AgCl (s)	A white precipitate of AgCI is formed. For alternative test:
The insoluble salt is the white ppt we observe.		Alternative test: Add dilute HNO ₃ , followed by adding $Pb(NO_3)_2$ solution.	A white precipitate of PbCl ₂ is formed.
Dilute HNO ₃ is first		$Pb^{2+}(aq) + 2Cl^{-}(aq) \rightarrow PbCl_{2}(s)$	
added to remove other possible anions present such as carbonates and hydroxides.	Nitrate NO ₃ ⁻	Add dilute NaOH , followed by adding a little aluminium powder . Warm the mixture. Aluminium reduces NO_3 - to NH_4 + ions:	Pungent NH₃ gas is produced which turns moist red litmus blue .
As presence of these anions might also produce precipitates with silver or lead.		$NH_4^+ (aq) + OH^- (aq) \rightarrow NH_3 (aq) + H_2O (I)$	

Nitric acid is not needed if there is only one anion.

TEST FOR GASES

Gas	Smell	Test	Observation
Ammonia, NH ₃	colourless, pungent	Test with a moist piece of red litmus paper	Moist red litmus paper turns blue
Carbon dioxide, CO ₂	colourless, odourless	Bubble the gas through limewater , Ca(OH) ₂	A white precipitate (CaCO ₃) is formed
Chlorine, Cl ₂	greenish- yellow, pungent	Test with a moist piece of blue litmus paper	Blue litmus paper first turns red and then bleached
Hydrogen, H ₂	colourless, odourless	Place a lighted splint near the gas	Gas extinguishes lighted splint with a " pop " sound
Oxygen, O ₂	colourless, odourless	Place a glowing splint near the gas	Gas reignites glowing splint
Sulfur dioxide, SO ₂	colourless, pungent	Bubble the gas through a solution of acidified potassium dichromate(VI) , K ₂ Cr ₂ O ₇ . Alternative: Bubble the gas through a solution of acidified potassium manganate(VII) , KMnO ₄ . Recall: SO ₂ is a reducing agent! Redox reaction occurs.	Acidified potassium dichromate (VI) turns from orange to green Acidified potassium manganate (VII) turns from purple to colourless

For more notes & learning materials, visit: <u>www.overmugged.com</u>

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Register now on our <u>website</u> and secure your slots!

III

OVERMUGGED

Join our telegram channel: <u>@overmugged</u>

DARRELL (Private tutor with **7 years** of experience)

8777 0921 (Whatsapp)

@Darreller (telegram username)

FREE NOTES | CRASH COURSES | 'O' LEVELS | 'A' LEVELS WWW.OVERMUGGED.COM