Topic 12: Congruency \& Similarity (4048)

MASTERY

- Relatively straight forward chapter
- 2 key concepts
- Concepts usually tested as a small part in Geometry Questions
- Not an easy chapter if students have struggles identifying which figures are congruent/similar
- High overall weightage
- Tested consistently every year
- Typically, an 8 m question, 1 question in one of the papers

Congruency \& Similarity of Triangles Area \& Volume of Similar Figures \& Solids

Congruency Tests			
Name	Test	Diagram	
SSS	$\begin{aligned} A B & =X Y \\ B C & =Y Z \\ A C & =X Z \end{aligned}$		
ASA	$\begin{aligned} A B & =X Y \\ \angle C A B & =\angle Z X Y \\ \angle A B C & =\angle X Y Z \end{aligned}$		
SAS	$\begin{aligned} A B & =X Y \\ B C & =Y Z \\ \angle A B C & =\angle X Y Z \end{aligned}$		
RHS	$\begin{gathered} A B=X Y \\ B C=Y Z \\ \angle A C B=\angle X Z Y=90^{\circ} \end{gathered}$		
Symbol for Congruency: \equiv			

Congruency

Figures that are identical in every aspect

For 2 triangles to be congruent, their corresponding sides and angles MUST be equal

4 tests for Congruency:

1. 'SSS' or 'side-side-side' test
2. 'ASA' or 'angle-side-angle' test
3. 'SAS' or 'side-angle-side' test
4. 'RHS' or 'right angle-hypotenuse-side' test

Similarity

Figures that have the same shape but different sizes

For 2 triangles to be similar, their ratio of the corresponding sides are the same for all lengths, and the corresponding angles are equal

3 tests for Congruency:

1. 'AAA' or 'angle-angle-angle' test
2. Corresponding sides same ratio
3. Ratio of 2 pairs of corresponding sides is the same and the included angles between them are equal

Take Note:

The naming conventions of Congruency \& Similarity Questions are important! Many students make mistake when defining the sides that they want to use in their arguments
$E X:$ To show that $\triangle A B C \equiv \triangle X Y Z$

To show that 2 sides are equal in length, the direction of how students define the length must stay consistent (Either all Clockwise or Anti-Clockwise)

$$
A C=X Z \quad \text { OR } \quad C A=Z X
$$

To show that 2 angles are equal in size, the direction of how students define the angles must stay consistent (Either all Clockwise or Anti-Clockwise)

$$
\angle A B C=\angle X Y Z \quad \text { OR } \quad \angle C B A=\angle Z Y X
$$

Justifications for each argument

Formal Justifications must be provided at each step, no matter how trivial

1. If the question states that the lengths/angles are equal, simply write the equal lengths/angles and state that it is "Given"

$$
A C=X Z \quad(\text { given })
$$

* Note that you can only use "Given" if the question explicitly states that the lengths/angles are equal! If you require to perform some calculations to find the lengths, you are NOT allowed to write "Given"

2. If $\mathbf{2}$ triangles have a common side/angle (means that $\mathbf{2}$ triangles are stuck together and joined with a side/angle that both triangles have), simply write that the side/angle is common

$A C$ is a common side

3. If the question requires some calculations for the angles, reasons must be explicitly stated as to how you come about with said calculations. Use reasons from Topic 11: Angles, Triangles \& Polygons, and Topic 13: Properties of Circles to help justify all your arguments

$$
\angle A B C=\angle X Y Z \text { (alternate angles) }
$$

Scale Factor

A value $\boldsymbol{k}>\mathbf{1}$ which alters the size of a figure
Shape and angles of the figure are preserved

$$
\text { Scale Factor } k=\frac{\text { Length of side of image }}{\text { Length of corresponding side of figure }}
$$

Scale Factor \boldsymbol{k}	Figure Transformation
$\boldsymbol{k}>\mathbf{1}$	Enlargement
$\boldsymbol{k}<\mathbf{1}$	Reduction

Area/Volume of similar plane figures

1. Area of similar plane figures

Similar figures have the ratios of their areas equal to the square of the ratio of lengths of any pairs of corresponding sides

$$
\frac{A_{1}}{A_{2}}=\left(\frac{I_{1}}{I_{2}}\right)^{2}=\frac{\left(I_{1}\right)^{2}}{\left(I_{2}\right)^{2}}
$$

2. Volume of similar solids

Similar solids have the ratios of their volumes equal to the cube of the ratio of lengths of any pairs of corresponding sides

$$
\frac{V_{1}}{V_{2}}=\left(\frac{I_{1}}{I_{2}}\right)^{3}=\frac{\left(I_{1}\right)^{3}}{\left(I_{2}\right)^{3}}
$$

IG handle:
@overmugged

Join our telegram channel:
@overmugged

Need help?
ONG KAI WEN
(Private tutor with 4 years of experience)
Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

97216433
(Whatsapp)
The crash courses will begin in June 2021 and last till Oct 2021.
Pre-register now on our website and secure your slots!

