ONG KAI WEN (COPYRIGHTED) ©

Topic 13: Proofs in Plane Geometry (4049)

MASTERY

- Challenging chapter (without practice)
- 2 key concepts

CHAPTER ANALYSIS

- Use of:
 - Properties of parallel lines cut by a transversal, perpendicular and angle bisectors, triangles, special quadrilaterals and circles
 - Congruent and Similar Triangles
- Use of:
 - Midpoint Theorem
 - Alternate Segment Theorem

6

EXAM

- · Concepts usually tested as a stand-alone topic
- Difficult especially if students, for the E-Math Chapters, do not have a strong foundation

Note that there are 3 chapters from E-Math that are pre-requisites

- Chapter 11: Angles Triangles and Polygons
- Chapter 12: Congruency & Similarity
- Chapter 13: Properties of Circles

WEIGHTAGE

- High overall weightage
- Tested consistently every year
- Typically, an 10m question, 1 question in one of the papers

KEY CONCEPT

Geometrical Properties of Angles Angle Properties of Triangles, Quadrilaterals

Type of Angles			
Name	Characteristics		
Right Angle	Angle that is equal to 90 °		
Acute Angle	Angle that is less than 90 °		
Obtuse Angle	Angle that is more than 90° but less than 180°		
Reflex Angle	Angle that is between 180 ° and 360 °		
Complementary Angle	2 angles that sum to 90°		
Supplementary Angle	$f 2$ angles that sum to $f 180^\circ$ (on a straight line)		

Angles about a point			
Angles at a point	θ α β	$lpha + eta + \gamma + artheta = 360^{\circ}$	
Vertically Opposite Angles	<i>θ β</i>	$lpha=\gamma \qquad oldsymbol{eta}=oldsymbol{artheta}$	

Geometrical Properties of Angles

Branch of Mathematics that deals with the properties, measurements and relationships of points, lines, angles, surfaces and solids

Angles formed by parallel lines and a transversal

Corresponding Angles

$$\alpha = \beta$$

Alternate Angles

$$\alpha = \beta$$

Interior Angles

$$\alpha + \beta = 180^{\circ}$$

Angle Properties of Triangles

The sum of 3 angles in a triangle is 180°

$$\alpha + \beta + \gamma = 180^{\circ}$$

Exterior angle of an angle is equal to the sum of the interior opposite angles

$$\alpha + \beta = \gamma$$

An **isosceles triangle** is a triangle with **2 equal sides**

$$\angle ACB = \angle ABC$$
 $AC = AB$

An **equilateral triangle** is a triangle with <u>3 equal sides</u>

$$\angle ACB = \angle CBA = \angle BAC = 60^{\circ}$$

 $AC = CB = BA$

Mid-point Theorem (*NEW*)

It states that the line segment connecting the midpoints of 2 sides of a triangle is parallel to the last side and is congruent to $\frac{1}{2}$ of the third side

In $\triangle ABC$, if AD = DC and AE = EB, then

- **DE** must be parallel to **CB**
- $DE = \frac{1}{2}CB$

Properties of Quadrilaterals (Part 1)

A **square** is a quadrilateral where:

- All sides are equal
- All angles are right-angles
- The diagonals are equal and cut at right-angles

$$AB = BC = CD = DA$$

 $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$
 $OA = OB = OC = OD$

A **rectangle** is a quadrilateral where:

- Opposite sides are equal
- All angles are right-angles
- The diagonals are equal

$$AB = DC$$
 and $BC = AD$
 $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$
 $OA = OB = OC = OD$

Properties of Quadrilaterals (Part 2)

A parallelogram is a quadrilateral where:

- Opposite sides are equal
- Opposite angles are equal

$$AB = CD$$
 and $AD = BC$
 $\angle A = \angle C$ and $\angle B = \angle D$

A **trapezium** is a quadrilateral where:

- One pair of parallel sides
- 2 obtuse angles and 2 acute angles

A rhombus is a quadrilateral where:

- All sides are equal
- Opposite angles are equal
- The diagonals are equal, cut at rightangles and bisect its interior angles

$$AB = BC = CD = DA$$

 $\angle A = \angle C$ and $\angle B = \angle D$
 $OA = OB = OC = OD$

KEY CONCEPT

Congruency & Similarity of Triangles

Congruency Tests Diagram Name **Test** AB = XYSSS BC = YZAC = XZAB = XY**ASA** $\angle CAB = \angle ZXY$ $\angle ABC = \angle XYZ$ AB = XYSAS BC = YZ $\angle ABC = \angle XYZ$ AB = XYRHS BC = YZ $\angle ACB = \angle XZY = 90^{\circ}$

Symbol for Congruency: \equiv

Congruency

Figures that are identical in every aspect

For 2 triangles to be congruent, their corresponding sides and angles MUST be equal

4 tests for Congruency:

- 1. 'SSS' or 'side-side-side' test
- 2. 'ASA' or 'angle-side-angle' test
- 3. 'SAS' or 'side-angle-side' test
- 4. 'RHS' or 'right angle-hypotenuse-side' test

Similarity Tests Name Test Diagram $\angle CAB = \angle ZXY$ $\angle ABC = \angle XYZ$ $\angle BCA = \angle YZX$ Corresponding sides same ratio $\frac{AB}{XY} = \frac{BC}{YZ} = \frac{AC}{XZ}$

 $\angle ABC = \angle XYZ$

Ratio of 2 sides same + 1 angle

Make sure that all Congruency & Similarity Tests have <u>3 lines of</u> justifications each to fulfil all test conditions

Similarity

Figures that have the same shape but different sizes

For 2 triangles to be similar, their ratio of the corresponding sides are the same for all lengths, and the corresponding angles are equal

3 tests for Congruency:

- 1. 'AAA' or 'angle-angle-angle' test
- 2. Corresponding sides same ratio
- 3. Ratio of 2 pairs of corresponding sides is the same and the included angles <u>between</u> them are equal

Take Note:

The naming conventions of Congruency & Similarity Questions are important! Many students make mistake when defining the sides that they want to use in their arguments

EX: To show that $\triangle ABC \equiv \triangle XYZ$

To show that 2 sides are equal in length, the direction of how students define the length must stay consistent (Either all Clockwise or Anti-Clockwise)

$$AC = XZ$$
 OR $CA = ZX$

To show that 2 angles are equal in size, the direction of how students define the angles must stay consistent (Either all Clockwise or Anti-Clockwise)

$$\angle ABC = \angle XYZ$$
 OR $\angle CBA = \angle ZYX$

Justifications for each argument

Formal Justifications must be provided at each step, no matter how trivial

1. If the question <u>states</u> that the lengths/angles are equal, simply write the equal lengths/angles and state that it is "**Given**"

$$AC = XZ$$
 (given)

* Note that you can only use "Given" if the question <u>explicitly states</u> that the lengths/angles are equal! If you require to perform some calculations to find the lengths, you are **NOT** allowed to write "Given"

2. If 2 triangles have a common side/angle (means that 2 triangles are stuck together and joined with a side/angle that both triangles have), simply write that the side/angle is common

AC is a common side

3. If the question requires some calculations for the angles, reasons must be explicitly stated as to how you come about with said calculations. Use reasons from Topic 11: Angles, Triangles & Polygons, and Topic 13: Properties of Circles to help justify all your arguments

$$\angle ABC = \angle XYZ$$
 (alternate angles)

Symmetry Properties of Circles Angle Properties of Circles

Additional <u>Useful</u> Theorems:

The line segment drawn from the centre to the midpoint of the chord is perpendicular to the chord

If AM = MB, then $AB \perp OM$

Every point on the perpendicular bisector of a line segment is equidistant from the endpoints of the segment

Symmetry Properties of Circles

4 Theorems to remember:

1. Chord Theorem

Chords equidistant from the centre of the circle are equal

If AB = CD, then $OE \perp AB$ and $OF \perp CD$

2. Perpendicular Bisector Theorem

A line from the centre, perpendicular to a chord that bisects the chord is known as the perpendicular bisector

If $AB \perp OM$, then AM = MB

Additional <u>Useful</u> Theorems:

The line joining the external point to the centre of the circle bisects the angle between the tangents

$$\angle AOT = \angle BOT$$

Symmetry Properties of Circles

3. Tangent Theorem

The line perpendicular to the tangent at the point of contact passes through the centre of the circle

$$\angle OTA = \angle OTB = 90^{\circ}$$

Tangents drawn from an external point to a circle are equal

$$AT = BT$$

Take Note:

This is a <u>highly tested theorem</u>! Many students struggle to find and use this Theorem in their solutions.

Always look out for a triangle with all 3 points touching the circle with one of the points at a tangent to the circle

Symmetry Properties of Circles

4. Alternate Segment Theorem

An angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment

$$\angle XAC = \angle ADC$$

$$\angle CAY = \angle ABC$$

Take Note:

Many students get tricked by this figure

Many students think that $\alpha=2\beta$ when in actual fact there is no special relationship between α and β

UNLESS: If the 2 lines above are tangents that extend to a point, then

$$\alpha + \beta = 180^{\circ}$$

Angle Properties of Circles

- 4 Angle Properties to remember:
- 1. Angle at centre is 2 times the angle at the circumference

2. Angles in a semicircle

$$\angle ACB = 90^{\circ}$$

A <u>cyclic quadrilateral</u> is a quadrilateral drawn inside a circle such that all its 4 vertices lie on the circumference of the circle

The sum of the opposite angles of a cyclic quadrilateral is 180°

$$\angle CDA + \angle ABC = 180^{\circ}$$

$$\angle DAB + \angle BCD = 180^{\circ}$$

Angle Properties of Circles

3. Angle between the tangent and radius is 90°

$$\angle OTA = \angle OTB = 90^{\circ}$$

4. Angles in same segment are equal

ONG KAI WEN (COPYRIGHTED) ©

$$\angle BAO = \angle DCO$$

Always look for this "butterfly" shape

About Us

OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on <u>IG</u> and join our <u>Telegram channel</u> to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Kaiwen's group tuition, contact him at:

Whatsapp: 9721 6433

Telegram: @ongkw28

Website: https://www.overmugged.com/kai-wen

For more free notes & learning materials, visit: www.overmugged.com

OVERMUGGED's Curated Notes

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a highly condensed booklet that covers all content within the MOE syllabus.

This booklet consist of key concept breakdowns, worked examples and exam tips/ techniques to required to ace your exams.

Get an upgraded version of the free notes and supercharge your revision!

Purchase here.

Crash courses

https://www.overmugged.com/crashcourses

'O' Levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- A-Math
- English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)