March Practice Questions 2022 Full Solutions (E-Math)

Copyright

All materials prepared in this Practice Questions set are prepared by the original tutor (Kaiwen). All rights reserved. No part of any materials provided may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without prior written permission of the tutor

Question Source

All questions are sourced and selected based on the known abilities of students sitting for the 'O' Level E-Math Examination. All questions compiled here are from 2009-2021 School Mid-Year / Prelim Papers. Questions are categorised into the various topics and range in varying difficulties. If questions are sourced from respective sources, credit will be given when appropriate.

How to read:

$$
\text { [S4 ABCSS P1/2011 PRELIM Qn } 1 \text {] }
$$

Secondary 4, ABC Secondary School, Paper 1, 2011, Prelim, Question 1

Syllabus (4048)

Algebra	Geometry \& Measurement	Statistics \& Probability
Numbers \& their Operations	Angles, Triangles \& Polygons	Data Analysis \& Handling
Ratio \& Propotion	Congruency \& Similarity	Probability
Percentage	Properties of Circles	
Rate \& Speed	Trigonometry	
Algebraic Expressions \& Formulae	Mensuration	
Functions \& Graphs	Coordinate Geometry	
Equations \& Inequalities	Vectors in 2 Dimensions	
Set Language \& Notation		
Matrices		
Problems in Real-World Context		

Contents

1 Numbers \& their Operations 3
1.1 Full Solutions 3
2 Ratio \& Proportion 5
2.1 Full Solutions 5
3 Percentage 6
3.1 Full Solutions 6
4 Rate \& Speed 9
4.1 Full Solutions 9
5 Algebraic Expressions \& Formulae 11
5.1 Full Solutions 11
6 Functions \& Graphs 15
6.1 Full Solutions 15
7 Equations \& Inequalities 21
7.1 Full Solutions 21
8 Set Language \& Notation 24
8.1 Full Solutions 24
9 Matrices 25
9.1 Full Solutions 25
10 Problems in Real-World Context 29
10.1 Full Solutions 29
11 Angles, Triangles \& Polygons 33
11.1 Full Solutions 33
12 Congruency \& Similarity 37
12.1 Full Solutions 37
13 Properties of Circles 40
13.1 Full Solutions 40
14 Trigonometry 43
14.1 Full Solutions 43
15 Mensuration 48
15.1 Full Solutions 48
16 Coordinate Geometry 52
16.1 Full Solutions 52
17 Vectors in 2 Dimensions 55
17.1 Full Solutions 55
18 Data Analysis \& Handling 59
18.1 Full Solutions 59
19 Probability 61
19.1 Full Solutions 61

1 Numbers \& their Operations

1.1 Full Solutions

1. (a)

$$
1.50 \times 10^{11} \mathrm{~m}
$$

(b)

$$
\begin{aligned}
\text { Time taken } & =\frac{1.4959 \times 10^{11}}{343} \\
& =\mathbf{4 . 3 6} \times \mathbf{1 0}^{\mathbf{8}} \mathbf{~} \mathbf{~ (3 . s . f .)}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Percentage } & =\frac{384400 \times 10^{3}}{1.4959 \times 10^{11}} \times 100 \% \\
& =\mathbf{0 . 2 5 7 \%} \text { (3.s.f.) }
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Time taken } & =\left(1.4959 \times 10^{11}\right) \times\left(8000 \times 10^{-9}\right) \\
& =\mathbf{1 . 2 0} \times \mathbf{1 0}^{\mathbf{6}} \mathbf{s}(\mathbf{3 . s . f .})
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\left(\frac{x^{6}}{25 y^{4}}\right)^{-\frac{1}{2}} & =\left(\frac{25 y^{4}}{x^{6}}\right)^{\frac{1}{2}} \\
& =\frac{\mathbf{5} y^{2}}{\boldsymbol{x}^{\mathbf{3}}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
9\left(\sqrt[3]{3^{3 x}}\right) & =\frac{1}{3^{3(2-x)}} \\
3^{2}\left(3^{x}\right) & =3^{-6+3 x} \\
3^{2+x} & =3^{3 x-6}
\end{aligned}
$$

Comparing powers,

$$
\begin{aligned}
2+x & =3 x-6 \\
x & =4
\end{aligned}
$$

(c)

$$
\begin{gathered}
a x^{n}-x=0 \\
x\left(a x^{n-1}-1\right)=0 \\
x=0 \quad \text { or } \quad a x^{n-1}-1=0
\end{gathered}
$$

For the second equation, since n is even, $(n-1)$ is odd

$$
\begin{aligned}
a x^{n-1}-1 & =0 \\
a x^{n-1} & =1 \\
x^{n-1} & =\frac{1}{a} \\
x & =\sqrt[n-1]{\frac{1}{a}}
\end{aligned}
$$

Since $(n-1)$ is odd, there is only one solution for $\sqrt[n-1]{\frac{1}{a}}$
$\therefore 2$ solutions
3. (a) (i)

$$
\begin{aligned}
& 27^{\frac{1}{3}}=3.0000 \quad \pi=3.1415 \quad \frac{22}{7}=3.1428 \\
& 3 . \dot{1}=3.1111 \quad 3.33=3.3300 \quad \sqrt{10}=3.1622 \\
& \begin{array}{llllll}
27^{\frac{1}{3}} & 3.1 & \pi & \frac{22}{7} & \sqrt{10} & 3.33
\end{array} \\
& \pi \quad \sqrt{10}
\end{aligned}
$$

(ii)
(b) (i)

$$
0.0923
$$

(ii)

$$
\begin{aligned}
\text { Time } & =\frac{750 \times 10^{6}}{500} \\
& =1.5 \times 10^{6} \mathrm{sec} \\
& =\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{~ m i n}
\end{aligned}
$$

2 Ratio \& Proportion

2.1 Full Solutions

1. (a)
$\underline{5}$ men takes $\underline{9}$ days to build a house
$\underline{1}$ man takes $\underline{45}$ days to build a house
$\underline{3}$ men takes $\underline{15}$ days to build a house
(b)

$$
V \propto R^{2} \quad \Rightarrow \quad V=k R^{2}
$$

Since the radius of the pipe increased by 150%,

$$
\begin{aligned}
& R_{\text {New }}=2.5 R \\
& V_{\text {New }}=\frac{V}{R^{2}} \times(2.5 R)^{2} \\
& =6.25 \mathrm{~V} \\
& \text { Percentage increase }=\frac{V_{\text {New }}-V}{V} \times 100 \% \\
& =\frac{6.25-V}{V} \times 100 \% \\
& =525 \%
\end{aligned}
$$

2. (a) Case 1: Online platform excluding the 5% discount

$$
\begin{aligned}
\text { Selling price } & =110 \% \times 95 \% \times 2020 \\
& =\$ 2111(\text { nearest dollar })
\end{aligned}
$$

Case 2: Online platform factoring the 5% discount

$$
\begin{aligned}
\text { Selling price } & =\frac{110 \% \times 2020}{95 \%} \\
& =\$ \mathbf{2 3 3 9}(\text { nearest dollar })
\end{aligned}
$$

(b)
$\underline{45}$ staff takes $\underline{8}$ hours a day to complete a project
$\underline{1}$ staff takes $\underline{360}$ hours a day to complete a project $\underline{40}$ staff takes $\underline{9}$ hours a day to complete a project
(c)

$$
\begin{aligned}
\operatorname{SGD} 1 & =\text { AUD } \frac{1}{12} \\
& =\text { AUD } 0.89285
\end{aligned}
$$

Hence, the money changer because 1 Singapore dollar worth more than in the bank
(d)

$$
\begin{aligned}
\text { Number of coins required } & =\frac{1000000}{21} \\
& =47620 \text { (nearest coins) }
\end{aligned}
$$

Amount of money raised $=(0.2-0.12) \times 47620$

$$
=\$ 3809.60 \text { (2.d.p.) }
$$

3 Percentage

3.1 Full Solutions

1. (a)

$$
\text { Number of children in } \begin{aligned}
2019 & =\frac{3714+8096+6516}{88 \%} \times 12 \% \\
& =\mathbf{2 4 9 9}
\end{aligned}
$$

$$
\text { Number of adults in } \begin{aligned}
2018 & =\frac{8096}{128 \%} \times 100 \% \\
& =\mathbf{6 3 2 5}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
k & =\frac{1.49 \times 10^{6}}{878} \\
& =1697.0387 \ldots \\
& =\mathbf{1 . 7 0} \times \mathbf{1 0}^{\mathbf{3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Mean number of days } & =\frac{5.08}{1.49} \\
& =3.409395 \ldots \\
& =\mathbf{3 . 4 1} \text { days }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { After } 6 \text { years }=9600\left(1+\frac{2.4}{100}\right)^{6} \\
& \begin{aligned}
\text { Total he received } & =9600\left(1+\frac{2.4}{100}\right)^{6} \times\left(\frac{1}{0.72}\right) \times 98.5 \% \\
& =15141.702 \ldots \\
& =\mathbf{S} \$ \mathbf{1 5 1 4 1 . 7 0} \text { (2.d.p.) }
\end{aligned}
\end{aligned}
$$

2. (a) (i)

$$
\begin{aligned}
\text { Deposit } & =\$ 5200 \times 20 \% \\
& =\$ \mathbf{1 0 4 0}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Hire purchase price } & =\$ 5200+3[(\$ 5200-\$ 1040) \times 3.6 \%] \\
& =\$ 5649.28(\text { exact })
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Monthly instalment } & =\frac{\$ 5649.28-\$ 1040}{36} \\
& =128.035555 \ldots \\
& =\$ \mathbf{1 2 8 . 0 4} \text { (2.d.p.) }
\end{aligned}
$$

(b) (i) - Interest Rate: 1.45 should be divided by 4 and not 12 , as it is compounded every 3 months

- Value of n : Power n should be 12 and not 3 , as the value of n is the number of times it is compounded within the timeframe
(ii)

$$
\$ x\left(1+\frac{\left(\frac{1.45}{4}\right)}{100}\right)^{12}
$$

(iii) We are solving for x

$$
\begin{aligned}
\$ 12533 & =\$ x\left(1+\frac{\left(\frac{1.45}{4}\right)}{100}\right)^{12} \\
x & =\frac{\$ 12533}{\left(1+\frac{\left(\frac{1.45}{4}\right)}{100}\right)^{12}} \\
& =\$ 12000.446 \ldots \\
& =\$ 12000 \text { (nearest dollar) }
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\text { Alternative rate } & =\left[\frac{\$ 12533}{\left(1+\frac{\left(\frac{1.45}{4}\right)}{100}\right)^{12}}\right]\left(1+\frac{1.7}{100}\right)^{3} \\
& =12622.93214 \ldots \\
& =\$ 12623 \text { (nearest dollar) }
\end{aligned}
$$

Yes, he should have invested the money compounded on a yearly basis as he would have earned more interest
3. (a)

$$
\text { Total discount from Shop } \begin{aligned}
B & =0.2 p+\frac{x}{100}(0.8 p) \\
& =p\left(0.2+\frac{0.8}{100} x\right) \\
& =\frac{p}{125}(25+x)
\end{aligned}
$$

$$
\therefore a=\mathbf{2 5}
$$

(b)

$$
\begin{aligned}
0.35 p & <\frac{p}{125}(25+x) \\
0.35(125) & <25+x \\
x & >18 \frac{3}{4} \\
\therefore \boldsymbol{k} & =\mathbf{1 8} \frac{\mathbf{3}}{4}
\end{aligned}
$$

4 Rate \& Speed

4.1 Full Solutions

1. (a) Since the distance travelled is 1140 m , this corresponds to the area under the graph

$$
\begin{aligned}
\frac{1}{2}(t)(40) & =1140 \\
t & =\mathbf{5 7} \mathbf{~ s}
\end{aligned}
$$

(b) To find the acceleration, we are looking for the gradient of the line

$$
\begin{aligned}
\text { Acceleration } & =\frac{40-0}{25-75} \\
& =-\mathbf{1 . 2 5} \mathbf{m} / \mathrm{s}^{\mathbf{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
60 \mathrm{~km} / \mathrm{h} & =\frac{60 \times 1000}{3600} \\
& =\mathbf{1 6} \frac{\mathbf{2}}{\mathbf{3}} \mathbf{m} / \mathrm{s}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Time taken (second car) } & =\frac{1140}{\left(16 \frac{2}{3}\right)} \\
& =68.4 \mathrm{~s}
\end{aligned}
$$

Disagree, as the second car will take a longer time
2.

$$
\begin{aligned}
& \text { Time to varnish } 1 \text { jar }=\frac{1}{\left(\frac{3}{5}\right)+\left(\frac{2}{3}\right)} \\
& =\frac{15}{19} \mathrm{hr} \\
& \begin{aligned}
\therefore 20 \text { jars } & =20\left(\frac{15}{19}\right) \\
& =15 \frac{15}{19} \mathrm{hrs} \\
& =\mathbf{1 5} \mathbf{~ h r s} \mathbf{4 7} \mathbf{~ m i n}
\end{aligned}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\text { Acceleration } & =\text { Gradient of line } \\
& =\frac{16-0}{24-20} \\
& =4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Total distance } & =\text { Area under graph } \\
& =A_{\text {arc }} A B+A_{\text {trapezium }} \\
& =\frac{1}{4}\left(\frac{22}{7}\right)(14)^{2}+\frac{1}{2}(16)(8+12) \\
& =\mathbf{3 1 4} \mathbf{~ m}
\end{aligned}
$$

(c) Distance-time graph

5 Algebraic Expressions \& Formulae

5.1 Full Solutions

1. (a) (i)

$$
x=3 \quad y=11 \quad z=15
$$

(ii)

$$
\begin{aligned}
T_{n} & =3+4(n-1) \\
& =\mathbf{4} \boldsymbol{n}-\mathbf{1}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
T_{109} & =4(109)-1 \\
& =\mathbf{4 3 5}
\end{aligned}
$$

(b) (i)

$$
\text { Number of lines per dot }=\mathbf{5}
$$

(ii)

$$
\text { Number of lines }=\mathbf{1 5}
$$

(iii)

$$
\text { Number of lines per } \operatorname{dot}(\mathrm{n})=\boldsymbol{n}-\mathbf{1}
$$

(iv) Pattern:

$$
\begin{array}{llllll}
0 & 1 & 3 & 6 & 9 & \ldots
\end{array}
$$

Note that these numbers follow the pattern of

$$
\begin{gathered}
\frac{n(n-1)}{2} \\
\therefore K_{256}=\frac{256(256-1)}{2} \\
=\mathbf{3 2 5 4 0}
\end{gathered}
$$

(v) Based on the formulae found in part (b)(iv), 71 must be written in as a product of 2 consecutive integers, however this is absurd as 71 is prime
2. (a)

$$
\begin{aligned}
S_{35} & =\frac{35(35+1)}{2} \\
& =\mathbf{6 3 0}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{n(n+1)}{2} & =1378 \\
n^{2}+n-2756 & =0 \\
(n+53)(n-52) & =0 \\
n=\mathbf{5 2} \quad \text { or } \quad n=53 & \text { (N.A.) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
T & =(1+2+3+\ldots+99)+99(100) \\
& =\frac{99(99+1)}{2}+9900 \\
& =\mathbf{1 4 8 5 0}
\end{aligned}
$$

(d)

$$
\begin{aligned}
P & =2(1+2+\ldots+50) \\
& =2\left(\frac{50(50+1)}{2}\right) \\
& =\mathbf{2 5 5 0}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\text { Sum of all odd integers } & =\frac{100(101)}{2}-2550 \\
& =\mathbf{2 5 0 0}
\end{aligned}
$$

3. (a)

$$
T_{5}=6+(5-2)^{2}-10=5
$$

(b)

$$
\begin{aligned}
T_{n} & =6+(n-2)^{2}-2 n \\
& =6+n^{2}-4 n+4-2 n \\
& =\boldsymbol{n}^{2}-\mathbf{6} \boldsymbol{n}+\mathbf{1 0}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{(3 k)^{2}-6(3 k)+10}{k^{2}-6 k+10} & =17 \\
9 k^{2}-18 k+10 & =17 k^{2}-102 k+170 \\
8 k^{2}-84 k+160 & =0 \\
2 k^{2}-21 k+40 & =0(\text { shown })
\end{aligned}
$$

(d)

$$
\begin{aligned}
2 k^{2}-21 k+40 & =0 \\
(2 k-5)(k-8) & =0 \\
k=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}} \quad \text { or } \quad k & =\mathbf{8}
\end{aligned}
$$

(e)

$$
k=2 \frac{1}{2} \notin \mathrm{Z}^{+} \quad \Rightarrow \Leftarrow
$$

4. (a) (i)

$$
\begin{aligned}
S & =\frac{8}{2} \sqrt{(3)^{2}-(-7)} \\
& =\mathbf{1 6}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S & =\frac{a}{2} \sqrt{n^{2}-b} \\
\frac{2 S}{a} & =\sqrt{n^{2}-b} \\
n^{2}-b & =\frac{4 S^{2}}{a^{2}} \\
n^{2} & =\frac{4 S^{2}}{a^{2}}+b \\
\boldsymbol{n} & = \pm \sqrt{\frac{\mathbf{4 \boldsymbol { S } ^ { \mathbf { 2 } }}}{\boldsymbol{a}^{\mathbf{2}}}+\boldsymbol{b}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{5}{\sqrt[3]{5}} & =5^{x-1} \\
5^{\frac{2}{3}} & =5^{x-1} \\
\therefore \frac{2}{3} & =x-1 \\
x & =\mathbf{1} \frac{\mathbf{3}}{\mathbf{3}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
9 x^{2}-25+12 x y-20 y & =(3 x-5)(3 x+5)+4 y(3 x-5) \\
& =(\mathbf{3} \boldsymbol{x}-\mathbf{5})(\mathbf{3} \boldsymbol{x}+\mathbf{5}+\mathbf{4} \boldsymbol{y})
\end{aligned}
$$

(d)

$$
\begin{aligned}
\frac{x^{2}+3 x-7}{x-4}+\frac{9+3 x}{4-x} & =\frac{x^{2}+3 x-7}{x-4}-\left(\frac{9+3 x}{x-4}\right) \\
& =\frac{x^{2}+3 x-7-9-3 x}{x-4} \\
& =\frac{x^{2}-16}{x-4} \\
& =\frac{(x+4)(x-4)}{x-4} \\
& =\boldsymbol{x}+\mathbf{4}
\end{aligned}
$$

6 Functions \& Graphs

6.1 Full Solutions

1. (a) For A and B, substitute $y=0$,

For C, substitute $x=0$,

$$
y=12
$$

$$
\therefore C(0,-12)
$$

(b)

$$
\text { Length of } \begin{aligned}
A C & =\sqrt{(-3-0)^{2}+(0-(-12))^{2}} \\
& =\sqrt{153} \\
& =12.369316 \ldots \\
& =\mathbf{1 2 . 4} \text { units (3.s.f.) }
\end{aligned}
$$

(c)

$$
\text { Gradient of } \begin{aligned}
B C & =\frac{0-(-12)}{4-0} \\
& =3
\end{aligned}
$$

$$
\therefore y=3 x-12
$$

(d)

$$
\begin{aligned}
x \text {-coordinate of minimum point } & =\frac{4+(-3)}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

Substitute $x=\frac{1}{2}$ into equation of the curve,

$$
\begin{aligned}
& \qquad \begin{aligned}
y & =\left(\frac{1}{2}-4\right)\left(\frac{1}{2}+3\right) \\
& =-12 \frac{1}{4}
\end{aligned} \\
& \text { Minimum point }=\left(\frac{1}{2},-12 \frac{1}{4}\right)
\end{aligned}
$$

(e) Below the minimum point $\left(\frac{1}{2},-12 \frac{1}{4}\right)$, there will be no solutions for the equation as there will be no intersection points between the curve and the line $y=k$, where

$$
k<-12 \frac{1}{4}
$$

$$
\begin{aligned}
& 0=(x-4)(x+3) \\
& x=4 \quad \text { or } \quad x=-3 \\
& A(-3,0) \quad \text { or } \quad B(4,0)
\end{aligned}
$$

2. Substitute the point $A(0.5,5)$ into the curve,

$$
\begin{align*}
5 & =\frac{p}{0.5}+0.5 q+1 \\
5 & =2 p+0.5 q+1 \\
10 & =4 p+q+2 \\
4 p+q & =8 \ldots . .(1) \tag{1}
\end{align*}
$$

Substitute the point $B(3,-10)$ into the curve,

$$
\begin{align*}
-10 & =\frac{p}{3}+3 q+1 \\
-30 & =p+9 q+3 \\
p+9 q & =-33 \\
p & =-33-9 q . . \tag{2}
\end{align*}
$$

Substitute Equation (2) into Equation (1),

$$
\begin{aligned}
4(-33-9 q)+q & =8 \\
35 q & =-140 \\
q & =-4
\end{aligned}
$$

Substitute $q=-4$ into Equation (2),

$$
\begin{aligned}
p & =-33-9(-4) \\
& =3 \\
\therefore p=\mathbf{3} & \quad \text { or } \quad q=-\mathbf{4}
\end{aligned}
$$

3. (a) When $x=3$,

$$
\begin{aligned}
q & =\frac{3}{10}\left[15-(3)^{2}\right] \\
& =\mathbf{1} \frac{\mathbf{4}}{\mathbf{5}}
\end{aligned}
$$

(b)

Graph is drawn on the next page
(c)

$$
\frac{x}{10}\left(15-x^{2}\right)=-1
$$

We are sketching the line $y=-1$ (blue)

$$
\therefore x=-0.69 \quad \text { or } \quad x=4.17
$$

(d) We draw a tangent at $x=3.5$ (green)

$$
\begin{aligned}
\text { Gradient } & =\frac{2.91-(-0.78)}{2.6-4.3} \\
& =-\mathbf{2 . 1 7} \text { (3.s.f.) }
\end{aligned}
$$

(e) (i)

> Graph is drawn on the next page
(ii)

$$
2 y=x+1
$$

(iii)

$$
\begin{equation*}
(0.51,0.76) \tag{2.88,1.94}
\end{equation*}
$$

Graph for Question 3

4. (a) When $t=2.5$,

$$
\begin{aligned}
k & =30 \times 2^{2.5} \\
& =\mathbf{1 6 9 . 7}
\end{aligned}
$$

(b) When $t=0$,

$$
N=\mathbf{3 0}
$$

(c)

> Graph is drawn on the next page
(d) When $N=250$,

$$
t=3.1 \mathrm{~s} \text { (2.s.f.) }
$$

(e)

$$
\begin{aligned}
\text { Gradient } & =\frac{245-79}{3.5-1.5} \\
& =\mathbf{8 3}
\end{aligned}
$$

At $t=2$, the flies are increasing at 83 flies per day
(f)

$$
t=3.2 \mathrm{~s} \text { (2.s.f.) }
$$

Graph for Question 4

7 Equations \& Inequalities

7.1 Full Solutions

1. (a)

$$
\left(\frac{900}{n}\right) \text { jars of cookies }
$$

(b)

$$
\$\left(\frac{900}{n}-2\right)(n+3)
$$

(c)

$$
\begin{aligned}
\left(\frac{900}{n}-2\right)(n+3)-900 & =92 \\
900+\frac{2700}{n}-2 n-6-900 & =92 \\
\frac{2700}{n}-2 n-6 & =92 \\
2700-2 n^{2}-98 n & =0 \\
m^{2}+49 n-1350 & =0 \text { (shown) }
\end{aligned}
$$

(d)

$$
\begin{gathered}
n^{2}+49 n-1350=0 \\
n=\frac{-49 \pm \sqrt{(49)^{2}-4(1)(-1350)}}{2(1)} \\
=\frac{-49 \pm \sqrt{7801}}{2} \\
n=19.662 \text { (3.d.p.) or } \quad n=-68.662 \text { (3.d.p.) }
\end{gathered}
$$

(e)

$$
\begin{aligned}
\text { Selling price } & =\left(\frac{-49+\sqrt{7801}}{2}\right) \\
& =\$ \mathbf{2 2 . 6 6} \text { (nearest cents) }
\end{aligned}
$$

2. (a) (i)

$$
\begin{aligned}
3 x^{2}-507 & =0 \\
x^{2} & =169 \\
\boldsymbol{x} & = \pm \mathbf{1 3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{x-2}{x+3}-\frac{x-3}{12+4 x}=5 \\
& \frac{x-2}{x+3}-\frac{x-3}{4(x+3)}=5 \\
& 4(x-2)-(x-3)=5[4(x+3)] \\
& 4 x-8-x+3=20 x+60 \\
& \boldsymbol{x}=-\mathbf{3} \frac{\mathbf{1 4}}{\mathbf{1 7}}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\frac{1}{9 c^{-2}} \times \frac{(3 d)^{-1}}{c^{3}} & =\frac{c^{2}}{9} \times \frac{1}{3 c^{3} d} \\
& =\frac{\mathbf{1}}{\mathbf{2 7} \boldsymbol{c d}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{5 f^{2} g^{3}}{21 g h} \div \frac{40 f^{5} g^{2}}{7 h^{3}} & =\frac{5 f^{2} g^{2}}{21 h} \times \frac{7 h^{3}}{40 f^{5} g^{2}} \\
& =\frac{35 f^{2} g^{2} h^{3}}{840 f^{5} g^{2} h} \\
& =\frac{\boldsymbol{h}^{\mathbf{2}}}{\mathbf{2 4} \boldsymbol{f}^{\mathbf{3}}}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
(x+y)_{\max } & =x_{\max }+y_{\max } \\
& =2+3 \\
& =\mathbf{5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
x y_{\min } & =\left(x_{\min }\right)\left(y_{\min }\right) \\
& =-7 \times 3 \\
& =\mathbf{- 2 1}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\left(x^{2}-y^{2}\right)_{\max } & =\left(x_{\max }\right)^{2}-\left(y_{\min }\right)^{2} \\
& =(-7)^{2}-0 \\
& =\mathbf{4 9}
\end{aligned}
$$

3. (a)

$$
\text { Outbound trip }=\frac{500}{x} \text { hours }
$$

(b) (i)

$$
\text { Return trip }=\frac{500}{x-25} \text { hours }
$$

(ii)

$$
\begin{aligned}
\frac{500}{x-25}-\frac{500}{x} & =\frac{15}{60} \\
60[500(x)-500(x-25)] & =15(x)(x-25) \\
30000 x-30000 x+750000 & =15 x^{2}-375 x \\
15 x^{2}-375 x-750000 & =0 \\
x^{2}-25 x-50000 & =0 \text { (shown) }
\end{aligned}
$$

(iii)

$$
\begin{gathered}
x=\frac{-(-25) \pm \sqrt{(-25)^{2}-4(1)(-50000)}}{2}=\frac{25 \pm \sqrt{200625}}{2} \\
x=236.455910 \ldots \quad \text { or } \quad x=-211.455910 \\
\boldsymbol{x}=\mathbf{2 3 6 . 4 6} \text { (2.d.p.) } \quad \text { or } \quad \boldsymbol{x}=\mathbf{- 2 1 1 . 4 6} \text { (2.d.p.) }
\end{gathered}
$$

(iv)

$$
\begin{aligned}
\text { Return trip } & =\frac{500}{\left(\frac{25+\sqrt{200625}}{2}\right)-25} \\
& =2.364559 \ldots \\
& =\mathbf{2} \text { hours } \mathbf{2 2} \text { minutes }
\end{aligned}
$$

8 Set Language \& Notation

8.1 Full Solutions

1. (a)

$$
\begin{gathered}
\mathscr{E}=\{2,3,4,5,6,7,8,9,10,11,12,13,14\} \\
E=\{2,3,5,7,11,13\} \\
F=\{2,3,6,9\} \\
G=\{3,6,9,12\}
\end{gathered}
$$

(i)

$$
E \cap F=\{2,3\}
$$

(ii)

$$
11 \in E \quad F \cap G=\{3,6,9\}
$$

(b) Diagram

(c)

$$
(A \cap B)^{\prime} \cap(A \cup B)
$$

2.

$$
\begin{gathered}
\mathscr{E}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
A=\{3,6,9,12,15\} \\
B=\{1,4,9,16\} \\
C=\{10,11,12,13,14,15,16\}
\end{gathered}
$$

(a)

$$
A^{\prime}=\{1,2,4,5,7,8,10,11,13,14,16\}
$$

(b)

$$
A \cap B=\{9\}
$$

(c)

$$
\begin{gathered}
A \cup B \cup C=\{1,3,4,6,9,10,11,12,13,14,15,16\} \\
\therefore(\boldsymbol{A} \cup B \cup C)^{\prime}=\{\mathbf{2}, \mathbf{5}, \mathbf{7}, \mathbf{8}\}
\end{gathered}
$$

9 Matrices

9.1 Full Solutions

1. (a) (i)

$$
\begin{aligned}
\mathbf{B}-\mathbf{A} & =\left(\begin{array}{ll}
20 & 21 \\
30 & 34 \\
16 & 15
\end{array}\right)-\left(\begin{array}{ll}
18 & 15 \\
32 & 37 \\
11 & 14
\end{array}\right) \\
& =\left(\begin{array}{cc}
\mathbf{2} & \mathbf{6} \\
\mathbf{- 2} & -\mathbf{3} \\
\mathbf{5} & \mathbf{1}
\end{array}\right)
\end{aligned}
$$

(ii) The change in new subscriptions between May and June which Aldrick and Bryan obtained for packages \mathbf{F}, \mathbf{G} and H respectively
(b) (i)

$$
C=\left(\begin{array}{lll}
30 & 45 & 60
\end{array}\right)
$$

(ii)

$$
\begin{aligned}
\mathbf{C A} & =\left(\begin{array}{lll}
30 & 45 & 60
\end{array}\right)\left(\begin{array}{ll}
18 & 15 \\
32 & 37 \\
11 & 14
\end{array}\right) \\
& =\left(\begin{array}{lll}
30(18)+45(32)+60(11) & 30(15)+45(37)+60(14)
\end{array}\right) \\
& =\left(\begin{array}{ll}
\mathbf{2 6 4 0} & \mathbf{2 9 5 5}
\end{array}\right)
\end{aligned}
$$

(iii) The total sales commissioned Aldrick and bryan received respectively in May
2. (a)

$$
A=\left(\begin{array}{lll}
390 & 300 & 350 \\
150 & 200 & 180
\end{array}\right)
$$

(b)

$$
\mathrm{H}=\left(\begin{array}{ll}
0.15 & 0.45
\end{array}\right)
$$

(c) (i)

$$
\begin{aligned}
\mathbf{R} & =\mathbf{A}+\mathbf{B} \\
& =\left(\begin{array}{lll}
390 & 300 & 350 \\
150 & 200 & 180
\end{array}\right)+\left(\begin{array}{lll}
220 & 250 & 200 \\
260 & 230 & 170
\end{array}\right) \\
& =\left(\begin{array}{lll}
\mathbf{6 1 0} & \mathbf{5 5 0} & \mathbf{5 5 0} \\
\mathbf{4 1 0} & \mathbf{4 3 0} & \mathbf{3 5 0}
\end{array}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathbf{M} & =\mathbf{R L} \\
& =\left(\begin{array}{lll}
610 & 550 & 550 \\
410 & 430 & 350
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\binom{610+550+550}{410+430+350} \\
& =\binom{\mathbf{1 7 1 0}}{\mathbf{1 1 9 0}}
\end{aligned}
$$

(iii) The elements represent the total weight of newspapers and clothes collected respectively by the 3 classes, from the 2 collections/weeks
(iv)

$$
\begin{aligned}
\mathbf{H M} & =\left(\begin{array}{ll}
0.15 & 0.45
\end{array}\right)\binom{1710}{1190} \\
& =\left(\begin{array}{ll}
0.15(1710)+0.45(1190)
\end{array}\right) \\
& =(\mathbf{7 9 2})
\end{aligned}
$$

(v)
\therefore Amount of money raised $=\$ 792$
3. (a) (i)

$$
\mathrm{B}=\left(\begin{array}{l}
20 \\
30 \\
10
\end{array}\right)
$$

(ii)

$$
\begin{aligned}
\mathbf{C} & =\mathbf{A B} \\
& =\left(\begin{array}{lll}
5 & 3 & 4 \\
2 & 1 & 2 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
20 \\
30 \\
10
\end{array}\right) \\
& =\left(\begin{array}{l}
5(20)+3(30)+4(10) \\
2(20)+1(30)+2(10) \\
2(20)+3(30)+2(10) \\
1(20)+2(30)+3(10)
\end{array}\right) \\
& =\left(\begin{array}{c}
\mathbf{2 3 0} \\
\mathbf{9 0} \\
\mathbf{1 5 0} \\
\mathbf{1 1 0}
\end{array}\right)
\end{aligned}
$$

(iii) The elements of \mathbf{C} represent the total number of buns, of toothbrushes, of packets of Milo and of packets of coffee respectively, needed to pack all the bags
(b) (i)

$$
\mathrm{D}=\left(\begin{array}{llll}
1 & 1.5 & 6.4 & 5.6
\end{array}\right)
$$

(ii)

$$
\begin{aligned}
\mathbf{E} & =\mathbf{D} \mathbf{A} \\
& =\left(\begin{array}{llll}
1 & 1.5 & 6.4 & 5.6
\end{array}\right)\left(\begin{array}{lll}
5 & 3 & 4 \\
2 & 1 & 2 \\
2 & 3 & 2 \\
1 & 2 & 3
\end{array}\right) \\
& =\left(\begin{array}{l}
1(5)+1.5(2)+6.4(2)+5.6(1) \\
1(3)+1.5(1)+6.4(3)+5.6(2) \\
1(4)+1.5(2)+6.4(2)+5.6(3)
\end{array}\right) \\
& =\left(\begin{array}{lll}
\mathbf{2 6 . 4} & \mathbf{3 4 . 9} & \mathbf{3 6 . 6}
\end{array}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathbf{F} & =\mathbf{E B} \\
& =\left(\begin{array}{lll}
26.4 & 34.9 & 36.6
\end{array}\right)\left(\begin{array}{l}
20 \\
30 \\
10
\end{array}\right) \\
& =(26.4(20)+34.9(30)+36.6(10)) \\
& =(\mathbf{1 9 4 1})
\end{aligned}
$$

(d) The element of \mathbf{F} represent the total cost in dollars of all the items needed to pack all the goodie bags altogether
4. (a)

$$
\mathbf{N}=\left(\begin{array}{lll}
14 & 12 & 10 \\
13 & 21 & 16
\end{array}\right)
$$

(b)

$$
P=\left(\begin{array}{lll}
26 & 29 & 18 \\
31 & 36 & 27
\end{array}\right)
$$

(c) Total products sold on Saturdays and Sundays respectively
(d)

$$
\begin{aligned}
\mathbf{Q} & =\frac{1}{2}\left(\begin{array}{lll}
26 & 29 & 18 \\
31 & 36 & 27
\end{array}\right)\left(\begin{array}{l}
2.5 \\
3.2 \\
4.5
\end{array}\right) \\
& =\frac{1}{2}\binom{26(2.5)+29(3.2)+18(4.5)}{31(2.5)+36(3.2)+27(4.5)} \\
& =\frac{1}{2}\binom{238.8}{314.2} \\
& =\binom{\mathbf{1 1 9 . 4}}{\mathbf{1 5 7 . 1}}
\end{aligned}
$$

(e) Average sum received from selling on Saturday and Sunday
(f)

$$
\begin{aligned}
\mathbf{R} & =\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{238.8}{314.2} \\
& =(238.8+314.2) \\
& =(553)
\end{aligned}
$$

Total amount earned on both Saturday and Sunday

10 Problems in Real-World Context

10.1 Full Solutions

1. CBSH Card

$$
\begin{aligned}
\text { Petrol savings } & =0.14 \times 350+0.05 \times 350 \\
& =\$ 66.50
\end{aligned}
$$

$$
\begin{aligned}
\text { Dining savings } & =0.05 \times 400 \\
& =\$ 20
\end{aligned}
$$

$$
\text { Grocery savings }=0.05 \times 100
$$

$$
=\$ 5
$$

$$
\text { Total savings }=\$ 66.50+\$ 20+\$ 5
$$

$$
=\$ 91.50
$$

BSOP Card

$$
\begin{aligned}
& \text { Petrol savings }=0.15 \times 350 \\
&=\$ 52.50 \\
& \text { Dining savings }=\$ 0
\end{aligned} \quad \begin{aligned}
\text { Grocery savings } & =0.05 \times 100 \\
& =\$ 5
\end{aligned} \begin{aligned}
\text { Total savings } & =\$ 52.50+\$ 0+\$ 5 \\
& =\$ 57.50
\end{aligned}
$$

CBCO Card

$$
\begin{aligned}
& \text { Petrol savings }=0.14 \\
&=\$ 64.05 \\
& \times 350+0.043 \times 350 \\
& \text { Dining savings }=0.05 \times 400 \\
&=\$ 20 \\
& \text { Grocery savings }=0.05 \times 100 \\
&=\$ 5 \\
& \text { Total savings }=\$ 64.05+\$ 20+\$ 5 \\
&=\$ 89.05
\end{aligned}
$$

Hence, he should apply for the CBSH card
2. (a) Graphs

Solution

Tips / Thinking Process

For container \boldsymbol{A}, the container is completely uniform. Hence, the rate of the water entering the container will be constant

The graph is a straight line with a positive gradient

For container \boldsymbol{B}, the base of the bottom part of the container is significantly smaller than the top part of the container. The rate of water filling up the bottom part of the container will not only be uniform but significantly faster than the top part of the container

The graph is a straight line split into 2 segments, where the initial gradient is much steeper than the second part of the line

For container \boldsymbol{C}, the container is a cylinder. The initial portion (at the tip of the cone) is going to fill up so much faster than the top of the container (base of the cone). The rate of water filling up the container is decreasing

The graph is a curve with a decreasing gradient

For container D, the container is a triangular prism. The base of the prism (rectangular base) is going to fill up so much slower than the top of the container (tip of the triangle). The rate of water filling up the container is increasing

The graph is a curve with an increasing gradient

Taken from 2022 Overmugged E-Math Curated Notes (Volume A)
(b)

$$
\begin{aligned}
& \text { Ratio of volume of prism }=\frac{1}{4} \\
& \begin{aligned}
\text { Required time } & =\frac{3}{4} \times 12 \\
& =\mathbf{9} \text { seconds }
\end{aligned}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\text { Mean length of time } & =\frac{6 \times 4+7.25+8 \times 2}{7} \\
& =\mathbf{6 . 7 5} \text { hours }
\end{aligned}
$$

(b) (i)

$$
\text { Multiplied the given annual consumption by } \frac{6.75}{8}
$$

(ii) Model S

$$
\begin{aligned}
& \text { Cost of electricity }=25.3 \times 1755 \\
& =\$ 444.015 \\
& \text { Cost (before discount) of servicing }=\$ 35 \times 3 \times 1.07 \\
& =\$ 112.35 \\
& \text { Cost (after discount) of servicing }=\$ 112.35 \times 60 \% \\
& =\$ 67.41 \\
& \text { Total for Model S }=\$ 650+7(\$ 444.015+\$ 67.41) \\
& =\$ 4229.975 \ldots \\
& =\$ 4229.96 \text { (2.d.p.) }
\end{aligned}
$$

Model E

$$
\begin{aligned}
\text { Cost of electricity } & =25.3 \times 1066.5 \\
& =\$ 269.8245 \\
\text { Total for Model } \mathrm{E} & =\$ 1300+7(\$ 269.8245+\$ 112.35) \\
& =\$ 3975.2215 \ldots \\
& =\$ 3975.22 \text { (2.d.p.) }
\end{aligned}
$$

Since Model E is obviously cheaper, Meg should get Model E
4. (a) (i)

$$
\begin{aligned}
\text { Perimeter } & =3[\text { Arc }+ \text { Straight line }] \\
& =3\left[6+3\left(\frac{120}{180} \pi\right)\right] \\
& =36.84955 \ldots \\
& =\mathbf{3 6 . 8 5} \mathbf{~ c m}(\mathbf{2 . d . p .}) \text { (shown) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Area } & =3 \text { rectangle }+3 \text { sector }+1 \text { triangle } \\
& =3(6)(3)+3\left[\frac{1}{2}(3)^{2}\left(\frac{120}{180} \pi\right)\right]+\frac{1}{2}(6)^{2} \sin 60^{\circ} \\
& =97.8627 \ldots \\
& =\mathbf{9 7 . 8 6} \mathbf{c m}^{\mathbf{2}} \text { (2.d.p.) (shown) }
\end{aligned}
$$

(b) The goal is to find the least surface area of the 2 containers

$$
\text { Total surface area of Diagram } \begin{aligned}
2 & =2 \text { circles }+1 \text { rectangle } \\
& =2 \pi(3)^{2}+2 \pi(3)(6)(3) \\
& =126 \pi \\
& =395.84 \mathrm{~cm}^{2}(5 . \text { s.f. })
\end{aligned}
$$

Total surface area of Diagram $3=2(\operatorname{part}(\mathrm{a})(\mathrm{ii}))+1$ rectangle

$$
\begin{aligned}
& =2(\mathrm{a})(\mathrm{ii})+[(\underline{(\mathrm{a})(\mathrm{i})}) \times 6] \\
& =416.82 \mathrm{~cm}^{2}(5 . \mathrm{s} . \mathrm{f} .)
\end{aligned}
$$

Comparing the 2 surface areas, the total surface area of the cylinder is less than the total surface area of the triangular box, which needs less material, making it more environmentally friendly. Hence, it is cheaper to use the closer cylinder design

Note: (a)(i) and (a)(ii) are the numerical answers from part (a). Remember to use at least 5 significant figures or the exact form in your solution and computation

11 Angles, Triangles \& Polygons

11.1 Full Solutions

1. (a)

$$
\text { Each exterior angle }=\frac{\mathbf{3 6 0}}{\mathbf{2 n + 6}}
$$

(b)

$$
\begin{aligned}
\frac{360}{n}-\frac{180}{n+3} & =14 \\
\frac{360(n+3)-180 n}{n(n+3)} & =14 \\
360 n+1080-180 n & =14 n(n+3) \\
14 n^{2}+42 n-180 n-1080 & =0 \\
14 n^{2}-138 n-1080 & =0 \text { (shown) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
14 n^{2}-138 n-1080 & =0 \\
(n-15)(7 n+36) & =0 \\
n=\mathbf{1 5} \quad \text { or } \quad n & =-\mathbf{5} \frac{\mathbf{1}}{\mathbf{7}}
\end{aligned}
$$

(d)

$$
n=-5 \frac{1}{7} \notin \mathrm{Z}^{+} \quad \Rightarrow \Leftarrow
$$

n must be a positive integer since it is the number of sides of a polygon
(e)

$$
\begin{aligned}
\text { Each interior angle } & =180^{\circ}-\left(\frac{360^{\circ}}{15}\right) \\
& =\mathbf{1 5 6}^{\circ}
\end{aligned}
$$

2. Diagram

3. (a)

Rhombus

(b) (i)

$$
\begin{aligned}
\text { Interior angle of hexagon } & =\frac{(6-2) \times 180^{\circ}}{6} \\
& =\mathbf{1 2 0}^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\angle F A B=\angle C B A=120^{\circ} \text { (interior angle of a regular hexagon) (A) } \\
F A=B C \text { (sides of a regular hexagon) (S) } \\
A B \text { is a common side (S) }
\end{gathered}
$$

$$
\text { By the } \mathbf{S A S} \text { congruency test, } \angle F A B=\angle C B A
$$

(iii)

$$
\begin{aligned}
& \angle A F B=\frac{180^{\circ}-120^{\circ}}{2} \\
& \quad=30^{\circ} \text { (angles in an isosceles triangle) } \\
& \begin{aligned}
\angle A B F & =\angle B A C=30^{\circ} \text { (congruent triangles) } \\
\angle A X B & =180^{\circ}-30^{\circ}-30^{\circ} \\
& =120^{\circ}(\text { angles in a triangle })
\end{aligned}
\end{aligned}
$$

$$
\therefore \angle F X C=12 \mathbf{0}^{\circ} \text { (vertically opposite angles) }
$$

(iv)

$$
\begin{aligned}
& \angle F A D=\frac{120^{\circ}}{2} \\
& \quad=60^{\circ} \text { (angle bisector) } \\
& \begin{aligned}
\angle F A D+\angle A F E & =60^{\circ}+120^{\circ} \\
& =180^{\circ}
\end{aligned}
\end{aligned}
$$

By the property: interior angles, $F E$ is parallel to $A D$
4. (a) (i)

$$
\begin{aligned}
\text { Interior angle of a regular octagon } & =\frac{(8-2) \times 180^{\circ}}{8} \\
& =\mathbf{1 3 5}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\angle C D E & =360^{\circ}-135^{\circ}-75^{\circ} \\
& =150^{\circ} \text { (angles about a point) }
\end{aligned}
$$

Exterior angle $=30^{\circ}$ (supplementary angles)

$$
\begin{aligned}
\therefore n & =\frac{360^{\circ}}{30^{\circ}} \\
& =\mathbf{1 2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\angle B A C & =\frac{180^{\circ}-150^{\circ}}{2} \\
& =15^{\circ}(\text { angles in an isosceles triangle })
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\angle A C E & =150^{\circ}-15^{\circ}-15^{\circ} \\
& =120^{\circ} \\
\therefore \angle C A E & =\frac{180^{\circ}-120^{\circ}}{2} \\
& =\mathbf{3 0}^{\circ} \text { (angles in an isosceles triangle) }
\end{aligned}
$$

(b)
$\angle A B C=\angle C D E$ (interior angles of a polygon) (A)
$A B=B C=C D=D E$ (sides of a regular polygon) $(\mathrm{S})(\mathrm{S})$
\therefore By the $\mathbf{S A S}$ congruency test, $\triangle A B C \equiv \triangle C D E$
(c) Assume that it is true to have a circle with diameter $A E$ and point C on the circumference.This implies that

$$
\angle A C E=90^{\circ} \text { (angles in a semicircle) }
$$

However, from part (a)(iv), $\angle A C E=120^{\circ} \neq 90^{\circ} . \Rightarrow \Leftarrow$ Hence, it is not possible

12 Congruency \& Similarity

12.1 Full Solutions

1. (a)
$B D$ is a common side (S)
$\angle B A D=\angle B C D($ angles in a semicircle) (A)
$\angle A D B=180^{\circ}-106^{\circ}-37^{\circ}$
$=37^{\circ}$ (angles in opposite segment)
$\therefore \angle A D B=\angle C D B$ (A)

By the ASA congruency test, $\triangle A B D \equiv \triangle C B D$
(b)

$$
\begin{aligned}
\cos \angle C D B & =\frac{C D}{B D} \\
C D & =8 \cos 37^{\circ} \\
& =6.389084 \ldots \\
& =\mathbf{6 . 3 9} \mathbf{~ c m}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Shaded Area } & =\text { Area of sector } A E C D-\text { Area of triangle } A C D \\
& =\frac{1}{2}(C D)^{2} \angle A D C-\frac{1}{2}(A D)(C D) \sin \angle A D C \\
& =\frac{1}{2}\left[8 \cos \left(\frac{37^{\circ}}{180^{\circ}} \pi\right)\right]^{2}\left(\frac{74^{\circ}}{180^{\circ}} \pi\right)-\frac{1}{2}\left[8 \cos \left(\frac{37^{\circ}}{180^{\circ}} \pi\right)\right]^{2} \sin \left(\frac{74^{\circ}}{180^{\circ}} \pi\right) \\
& =6.741119 \ldots \\
& =\mathbf{6 . 7 4} \mathbf{c m}^{2}
\end{aligned}
$$

Take Note

Since calculation of the area of a sector must be done in radians, all angles must be converted into radians
2.

$$
\begin{aligned}
\text { Curved surface of cylinder } & =2 \pi(2 r) h \\
& =4 \pi r h
\end{aligned}
$$

Let s be the small cone, b be the big cone

$$
\begin{aligned}
\text { Curved surface of frustrum } & =\text { Curved }_{\text {big cone }}-\text { Curved }_{\text {small cone }} \\
& =2 \pi r l_{b}-\pi r l_{s}
\end{aligned}
$$

The big cone is geometrically similar to the small cone

$$
\begin{gathered}
\frac{r_{s}}{r_{b}}=\frac{h_{s}}{h_{b}}=\frac{l_{s}}{l_{b}}=\frac{1}{2} \\
\frac{A_{s}}{A_{b}}
\end{gathered}=\left(\frac{l_{s}}{l_{b}}\right)^{2} .
$$

Curved $_{\text {small cone }}=\pi r \sqrt{r^{2}+h^{2}}$
\therefore Curved $_{\text {big cone }}=3 \pi r \sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
3 \pi r \sqrt{r^{2}+h^{2}} & =4 \pi r h \\
\sqrt{r^{2}+h^{2}} & =\frac{4}{3} h \\
h^{2}+r^{2} & =\frac{16}{9} h^{2} \\
h^{2} & =\frac{9}{7} r^{2} \\
h & = \pm \sqrt{\frac{9}{7}} r^{2}(\text { rej }-\mathrm{ve}) \\
& =\frac{\mathbf{3}}{\sqrt{7}} \boldsymbol{r}
\end{aligned}
$$

3. (a)

$\triangle R T S$

(b) (i)

$$
\begin{gathered}
\angle P V S=\angle U V Q \text { (vertically opposite angles) (A) } \\
\angle V P S=\angle V U Q \text { (alternate angles) (A) } \\
\angle V S P=\angle V Q U \text { (alternate angles) (A) }
\end{gathered}
$$

By the AAA similarity test, $\triangle P V S$ is similar to $\triangle U V Q$
(ii)

$$
\begin{aligned}
\frac{Q V}{Q S} & =\frac{1}{3} \\
Q S & =2 Q T \\
\frac{Q V}{2 Q T} & =\frac{1}{3} \\
\frac{Q V}{Q T} & =\frac{2}{3}
\end{aligned}
$$

$$
\therefore Q V=2 V T \text { (shown) }
$$

(c)

$$
\begin{aligned}
\frac{\text { Area of } \triangle Q V U}{\text { Area of trapezium } P U R S} & =\frac{\text { Area of } \triangle Q V U}{\text { Area of } \triangle Q P U} \times \frac{\text { Area of } \triangle Q P U}{\text { Area of trapezium } P U R S} \\
& =\frac{1}{3} \times \frac{3}{9} \\
& =\frac{1}{9}
\end{aligned}
$$

$\therefore 1: 9$

13 Properties of Circles

13.1 Full Solutions

1. (a)

$$
\angle O E A=35^{\circ} \text { (angle in the same segment) }
$$

(b)

$$
\begin{aligned}
& \angle A O B=35^{\circ} \times 2 \\
& = \\
& \\
& \quad 70^{\circ} \text { (angle at centre is } 2 \text { times angle at circumference) } \\
& \quad \begin{aligned}
\text { Reflex } \angle A O B & =360^{\circ}-70^{\circ} \\
& =\mathbf{2 9 0}^{\circ} \text { (angles about a point) }
\end{aligned}
\end{aligned}
$$

(c) Since $O A$ and $O B$ are radii of the circle, $\triangle A O B$ is an isosceles triangle

$$
\begin{aligned}
& \angle B A O=\frac{180^{\circ}-70^{\circ}}{2} \\
& =55^{\circ}(\text { angles in an isosceles triangle }) \\
& \begin{aligned}
\therefore \angle B A C & =55^{\circ}-40^{\circ} \\
& =15^{\circ}
\end{aligned}
\end{aligned}
$$

(d) Since $O E$ and $O A$ are radii of the circle, $\triangle O A E$ is an isosceles triangle

$$
\begin{aligned}
& \angle O A E=35^{\circ} \text { (angles in an isosceles triangle) } \\
& \begin{aligned}
\angle C D E & =180^{\circ}-40^{\circ}-35^{\circ} \\
& =105^{\circ} \text { (angles in opposite segments) } \\
\angle F E B & =105^{\circ} \text { (corresponding angles) }
\end{aligned}
\end{aligned}
$$

(e)

$$
\begin{aligned}
\angle O E D & =180^{\circ}-105^{\circ} \\
& =75^{\circ} \text { (interior angles) }
\end{aligned}
$$

Since $O E$ and $O D$ are radii of the circle, $\triangle O E D$ is an isosceles triangle

$$
\begin{aligned}
\angle D O E & =180^{\circ}-75^{\circ}-75^{\circ} \\
& =15^{\circ} \text { (angles in an isosceles triangle) }
\end{aligned}
$$

2. (a) (i)

$$
\begin{aligned}
& \angle B C A=30^{\circ}+30^{\circ} \\
& =60^{\circ} \text { (exterior angle in a triangle) } \\
& \angle A B C=90^{\circ} \text { (angles in a semicircle) } \\
& \angle B A C=180^{\circ}-60^{\circ}-90^{\circ} \\
& =\mathbf{3 0} \text { (sum of angles in a triangle) }
\end{aligned}
$$

(ii)
$\angle C E B=\mathbf{3 0}^{\circ}$ (angles in the same segment)
(iii)

$$
\begin{aligned}
\angle C B E & =180^{\circ}-140^{\circ} \\
& =40^{\circ} \text { (angles in opposite segment) }
\end{aligned}
$$

(iv)
$\angle O B X=90^{\circ}$ (tangent is perpendicular to radius)

$$
\begin{aligned}
\angle O B Y & =90^{\circ}-40^{\circ}-30^{\circ} \\
& =\mathbf{2 0 ^ { \circ }}(\text { complementary angles })
\end{aligned}
$$

(b)

$$
\begin{aligned}
\angle A B E & =20^{\circ}+30^{\circ} \\
& =50^{\circ} \text { (base angles in an isosceles triangle) }
\end{aligned}
$$

T lies inside the circle $\because \angle A T E>\angle A B E$
3. (a) (i)

$$
\angle E B A=\mathbf{2 3}^{\circ} \text { (angles in the same segment) }
$$

(ii)

$$
\begin{aligned}
\angle E B C & =90^{\circ}-23^{\circ} \\
& =\mathbf{6 7} 7^{\circ}(\text { angles in a semicircle })
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\angle C D E & =180^{\circ}-67^{\circ} \\
& =\mathbf{1 1 3} \text { (angles in opposite segment) }
\end{aligned}
$$

(b) Let D be the centre of the circle

$$
\angle D C E=90^{\circ} \text { (tangent is perpendicular to radius) }
$$

$$
\begin{aligned}
\angle C B E & =65^{\circ} \times 2 \\
& =130^{\circ} \text { (angle at centre is } 2 \text { times angle at circumference) }
\end{aligned}
$$

$$
\begin{aligned}
\text { Sum of angles in the quadrilateral } & =90^{\circ}+90^{\circ}+130^{\circ}+48^{\circ} \\
& =358^{\circ} \neq 360^{\circ}
\end{aligned}
$$

Since the sum of angles in the quadrilateral is 358°, this is absurd as the total interior angles of a quadrilateral is $360^{\circ} \Rightarrow \Leftarrow$
D is not the centre of the circle

14 Trigonometry

14.1 Full Solutions

1. (a) (i) By Sine Rule,

$$
\begin{aligned}
\frac{A B}{\sin 40^{\circ}} & =\frac{120}{\sin 60^{\circ}} \\
A B & =\frac{120 \sin 40^{\circ}}{\sin 60^{\circ}} \\
& =89.067 \ldots \\
& =\mathbf{8 9 . 1}^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\left(\frac{120 \sin 40^{\circ}}{\sin 60^{\circ}}\right)(120) \sin 80^{\circ} \\
& =5263.83 \ldots \\
& =\mathbf{5 2 6 0} \mathbf{~ c m ~ (3 . s . f .) ~}
\end{aligned}
$$

(iii) In $\triangle B E C$

$$
\begin{aligned}
B E & =120 \sin 30^{\circ} \\
& =60 \mathrm{~cm}
\end{aligned}
$$

The angle of depression corresponds to the angle of elevation of A from B. Let this be θ

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{100-60}{\left(\frac{120 \sin 40^{\circ}}{\sin 60^{\circ}}\right)}\right) \\
& =\mathbf{2 6 . \mathbf { 7 } ^ { \circ }} \text { (1.d.p.) }
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\angle A B C & =150^{\circ}-\left(245^{\circ}-180^{\circ}\right) \\
& =85^{\circ}
\end{aligned}
$$

By Cosine Rule,

$$
\begin{aligned}
A C & =\sqrt{(90)^{2}+(160)^{2}-2(90)(160) \cos 85^{\circ}} \\
& =176.61 \ldots \\
& =\mathbf{1 7 7} \mathbf{m} \text { (3.s.f.) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
h & =\frac{1}{3}(28) \\
& =\frac{28}{3} \mathrm{~m} \\
X C & =\frac{\left(\frac{28}{3}\right)}{\tan 15^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Distance walked } & =\sqrt{(90)^{2}+(160)^{2}-2(90)(160) \cos 85^{\circ}}-\frac{\left(\frac{28}{3}\right)}{\tan 15^{\circ}} \\
& =141.78 \mathrm{~m} \\
& =\mathbf{1 4 2} \mathbf{m}(\mathbf{3 . s . f .})
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\angle P Q S & =180^{\circ}-126^{\circ} \\
& =54^{\circ}
\end{aligned}
$$

By Sine Rule,

$$
\begin{aligned}
\frac{Q S}{\sin 68^{\circ}} & =\frac{460}{\sin 54^{\circ}} \\
Q S & =\frac{460 \sin 68^{\circ}}{\sin 54^{\circ}} \\
& =527.188 \ldots \\
& =\mathbf{5 2 7} \mathbf{m} \text { (3.s.f.) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\angle R Q S & =126^{\circ}-98^{\circ} \\
& =28^{\circ}
\end{aligned}
$$

By Cosine Rule,

$$
\begin{aligned}
R S & =\sqrt{(562)^{2}+\left(\frac{460 \sin 68^{\circ}}{\sin 54^{\circ}}\right)^{2}-2(562)\left(\frac{460 \sin 68^{\circ}}{\sin 54^{\circ}}\right) \cos 28^{\circ}} \\
& =265.654 \ldots \\
& =\mathbf{2 6 6} \mathbf{m} \text { (3.s.f.) }
\end{aligned}
$$

(c) Let the distance be x

$$
\begin{aligned}
\angle X Q R & =180^{\circ}-98^{\circ} \\
& =82^{\circ} \\
\cos 82^{\circ} & =\frac{x}{562} \\
x & =562 \cos 82^{\circ} \\
= & 78.215282 \ldots \\
= & \mathbf{7 8 . 2} \mathbf{m}(\text { 3.s.f. })
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\angle P R Q & =241^{\circ}-180^{\circ} \\
& =61^{\circ} \text { (alternate angles) }
\end{aligned}
$$

By Cosine Rule,

$$
\begin{aligned}
P Q & =\sqrt{(72)^{2}+(85)^{2}-2(72)(85) \cos 61^{\circ}} \\
& =80.466951 \ldots \\
& =\mathbf{8 0 . 5} \mathbf{~ m ~ (3 . s . f .)}
\end{aligned}
$$

(b) Let the first possible point S be S_{1} and the second possible point be S_{2}

$$
\begin{aligned}
\angle Q R S & =99^{\circ}-61^{\circ} \\
& =38^{\circ}
\end{aligned}
$$

In $\triangle R Q S$, by Sine Rule,

$$
\begin{aligned}
& \frac{\sin \angle R S Q}{85}=\frac{\sin 38^{\circ}}{54} \\
& \sin \angle R S Q=\frac{8 \sin 38^{\circ}}{54}
\end{aligned}
$$

Using the first possible point S_{1},

$$
\begin{aligned}
\angle R S_{1} Q & =\frac{8 \sin 38^{\circ}}{54} \\
& =75.7188 \ldots \\
& =\mathbf{7 5 . 7}^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

Using the second possible point S_{2},

$$
\begin{aligned}
\angle R S_{2} Q & =180^{\circ}-\left(\frac{8 \sin 38^{\circ}}{54}\right) \\
& =104.2812 \ldots \\
& \left.=\mathbf{1 0 4 . 3 ^ { \circ }} \text { (1.d.p. }\right)
\end{aligned}
$$

(c) Let point S_{1} be Temasek and let point S_{2} be Novotel

Team Novotel

$$
\begin{aligned}
\angle R Q S_{2} & =180^{\circ}-38^{\circ}-\left[180^{\circ}-\left(\frac{8 \sin 38^{\circ}}{54}\right)\right] \\
& =37.7188^{\circ}
\end{aligned}
$$

By Sine Rule,

$$
\begin{aligned}
\frac{R S_{2}}{\sin 37.7188^{\circ}} & =\frac{54}{\sin 38^{\circ}} \\
R S_{2} & =53.66 \mathrm{~m} \\
& =53.7 \mathrm{~m} \\
\therefore \text { Time taken }= & \frac{53.66}{0.7 x}=\frac{76.657}{x}
\end{aligned}
$$

Team Tamasek

$$
\begin{aligned}
\left(\text { Team Temasek) } \begin{array}{rl}
\angle R Q S_{1} & =180^{\circ}-38^{\circ}-\left[\frac{8 \sin 38^{\circ}}{54}\right] \\
& =66.2812^{\circ}
\end{array}\right. \text { (}
\end{aligned}
$$

By Sine Rule,

$$
\left.\begin{array}{rl}
\frac{R S_{2}}{66.2812^{\circ}} & =\frac{54}{\sin 38^{\circ}} \\
R S_{2} & =80.3017 \mathrm{~m} \\
& =80.3 \mathrm{~m}
\end{array}\right] \begin{aligned}
& \therefore \text { Time taken }=\frac{80.3017}{x}
\end{aligned}
$$

Time taken by Team Novotel is less than time taken by Team Temasek. Hence, I agree that Team Novotel will win the race
4. (a) (i)

$$
\begin{aligned}
B C & =\sqrt{(570)^{2}+(540)^{2}-2(570)(540) \cos 65^{\circ}} \\
& =596.939023 . . . \\
& =\mathbf{5 9 7} \mathbf{m} \text { (3.s.f.) }
\end{aligned}
$$

(ii) By Sine Rule,

$$
\begin{aligned}
\frac{\sin \angle B C A}{570} & =\frac{\sin 65^{\circ}}{\sqrt{(570)^{2}+(540)^{2}-2(570)(540) \cos 65^{\circ}}} \\
\angle B C A & =\sin ^{-1}\left(\frac{570 \sin 65^{\circ}}{\sqrt{(570)^{2}+(540)^{2}-2(570)(540) \cos 65^{\circ}}}\right) \\
& =59.929255 . . \\
& =\mathbf{5 9 . 9} \mathbf{9}^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Bearing } & =360^{\circ}-(180-79)^{\circ}-\sin ^{-1}\left(\frac{570 \sin 65^{\circ}}{\sqrt{(570)^{2}+(540)^{2}-2(570)(540) \cos 65^{\circ}}}\right) \\
& =199.070744 . . \\
& =\mathbf{1 9 9 . 1}^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

(b)

$$
\begin{gathered}
\tan 2.6^{\circ}=\frac{H D}{490} \\
H D=490 \tan 2.6^{\circ} \\
C D=\sqrt{(540)^{2}-(490)^{2}} \\
=\sqrt{51500}
\end{gathered}
$$

Let the angle of depression be θ,

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{490 \tan 2.6^{\circ}}{\sqrt{51500}}\right) \\
& =5.599872 \ldots \\
& \left.=\mathbf{5 . 6 ^ { \circ }} \text { (1.d.p. }\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { Area of land }=\frac{1}{2}(490)(\sqrt{51500})+\frac{1}{2}(570)(540) \sin 65^{\circ} \\
& \begin{aligned}
\text { Value of land } & =\$ 45000\left[\frac{1}{2}(490)(\sqrt{51500})+\frac{1}{2}(570)(540) \sin 65^{\circ}\right] \\
& =\$ 877860.524 \ldots \\
& =\$ 877860.52 \text { (2.d.p.) }
\end{aligned}
\end{aligned}
$$

15 Mensuration

15.1 Full Solutions

1. (a)

$$
\begin{aligned}
\operatorname{Arc} B D & =6(1.2) \\
& =\mathbf{7 . 2} \mathbf{~ c m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\tan 1.2 & =\frac{B C}{6} \\
B C & =6 \tan 1.2 \\
& =15.4329 \ldots \\
& =\mathbf{1 5 . 4} \mathbf{~ c m}(\mathbf{3 . s . f .})
\end{aligned}
$$

(c)

$$
\begin{aligned}
\cos 1.2 & =\frac{6}{A C} \\
A C & =\frac{6}{\cos 1.2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Perimeter of } Y & =7.2+6 \tan 1.2+\left(\frac{6}{\cos 1.2}-6\right) \\
& =33.1911 . . \\
& =\mathbf{3 3 . 2} \mathbf{~ c m}(\mathbf{3 . s . f .)}
\end{aligned}
$$

(d)

$$
\text { Area of } \begin{aligned}
X & =\frac{1}{2}(6 \tan 1.2)^{2}\left(\frac{\pi}{2}-1.2\right)-\frac{1}{2}(6 \tan 1.2)^{2} \sin \left(\frac{\pi}{2}-1.2\right) \\
& =1.0049 \ldots \\
& =\mathbf{1 . 0 0} \mathbf{c m}^{\mathbf{2}} \text { (3.s.f.) }
\end{aligned}
$$

(e)

$$
\begin{aligned}
\text { Area of } Y & =\frac{1}{2}(6)(6 \tan 1.2)-\frac{1}{2}(6)^{2}(1.2) \\
& =24.6987 \ldots \\
& \left.=\mathbf{2 4 . 7} \mathbf{c m}^{2} \text { (3.s.f. }\right)
\end{aligned}
$$

2. (a) (i)

$$
\begin{aligned}
\text { Surface area of the ornament } & =2 \pi\left(\frac{32}{2}\right)^{2}+2 \pi\left(\frac{16}{2}\right)+\left[\pi\left(\frac{32}{2}\right)^{2}-\pi\left(\frac{16}{2}\right)^{2}\right] \\
& =\mathbf{8 3 2} \boldsymbol{\pi} \mathbf{c m}^{\mathbf{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Volume of ornament } & =\frac{2}{3} \pi\left(\frac{32}{2}\right)^{3}-\frac{2}{3} \pi\left(\frac{16}{2}\right)^{3} \\
& =7506.31204 \ldots \\
& =\mathbf{7 5 1 0} \mathbf{c m}^{\mathbf{3}}(\mathbf{3 . s . f .})
\end{aligned}
$$

(b) (i) First, note that $\triangle A P B$ is a right triangle (angles in a semicircle)

$$
\begin{aligned}
O A & =\frac{\left(\frac{5}{\cos 75^{\circ}}\right)}{2} \\
& =9.66 \mathrm{~cm}(\text { 3.s.f. })(\text { shown })
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\angle A O P & =75^{\circ} \times 2 \\
& =150^{\circ} \text { (angle at centre is } 2 \text { times angle at circumference) }
\end{aligned}
$$

$$
\begin{aligned}
\text { Shaded region } & =\frac{1}{2}\left(\frac{5}{2 \cos \left[\frac{75^{\circ}}{180^{\circ}} \times \pi\right]}\right)^{2}\left(\frac{150^{\circ}}{180^{\circ}} \times \pi\right)-\frac{1}{2}\left(\frac{5}{2 \cos \left[\frac{75^{\circ}}{180^{\circ}} \times \pi\right]}\right)^{2} \sin \left(\frac{150^{\circ}}{180^{\circ}} \times \pi\right) \\
& =98.805759 \ldots \\
& =\mathbf{9 8 . 8} \mathbf{c m}^{\mathbf{2}}(\mathbf{3 . s . f .})
\end{aligned}
$$

3.

$$
\begin{gathered}
\pi r l+2 \pi r^{2} \\
l=2 r
\end{gathered}
$$

By Pythagoras' Theorem,

$$
\begin{gathered}
\qquad \begin{array}{c}
h=\sqrt{(2 r)^{2}-r^{2}} \\
=\sqrt{3} r \\
\text { Volume }=\pi r^{2}(\sqrt{3} r+2 r)-\frac{1}{3} \pi r^{2}(\sqrt{3} r)-\frac{2}{3} \pi r^{3} \\
=7.81638 \ldots r^{3} \\
=\mathbf{7 . 8 2} r^{3}(\mathbf{3 . s . f .})
\end{array}
\end{gathered}
$$

4. (a) (i) By similar triangles,

$$
\begin{aligned}
& \frac{r}{R}=\frac{8}{h} \\
& \boldsymbol{r}=\frac{8 \boldsymbol{R}}{\boldsymbol{h}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Volume of water } & =V_{\text {big cone }}-V_{\text {small cone }} \\
& =\frac{1}{3} \pi(R)^{2}(h)-\frac{1}{3} \pi(r)^{2}(8) \\
& =\frac{1}{3} \pi(R)^{2}(h)-\frac{1}{3} \pi\left(\frac{8 R}{h}\right)^{2}(8) \\
& =\frac{1}{3} \pi R^{2} h-\frac{512 R^{2}}{3 h^{2}} \pi \\
& =\frac{1}{3} \pi R^{2}\left(h-\frac{512}{h^{2}}\right) \text { (shown) }
\end{aligned}
$$

(b) Let the new radius be r_{2}

$$
\begin{aligned}
\frac{r_{2}}{R} & =\frac{h-2}{h} \\
r_{2} & =\frac{R(h-2)}{h} \\
\therefore \text { Volume of water } & =\frac{1}{3} \pi\left(r_{2}\right)^{2}(h-2) \\
& =\frac{1}{3} \pi\left(\frac{R(h-2)}{h}\right)^{2}(h-2) \\
& =\frac{1}{3} \pi R^{2} \frac{(h-2)^{3}}{h^{2}}(\text { shown })
\end{aligned}
$$

(c)

$$
\begin{aligned}
\therefore \frac{1}{3} \pi R^{2}\left(h-\frac{512}{h^{2}}\right) & =\frac{1}{3} \pi R^{2} \frac{(h-2)^{3}}{h^{2}} \\
h-\frac{512}{h^{2}} & =\frac{(h-2)^{3}}{h^{2}} \\
h^{3}-512 & =(h-2)\left(h^{2}-4 h+4\right) \\
& =h^{3}-4 h^{2}+4 h-2 h^{2}+8 h-8 \\
6 h^{2}-12 h-504 & =0 \\
h^{2}-2 h-84 & =0 \text { (shown })
\end{aligned}
$$

(d)

$$
\begin{gathered}
h=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-84)}}{2(1)} \\
=\frac{2 \pm \sqrt{340}}{2} \\
h=10.219544 \ldots \quad \text { or } \quad h=-8.219544 \ldots \\
\boldsymbol{h}=\mathbf{1 0 . 2}(\mathbf{1 . d . p .}) \quad \text { or } \quad \boldsymbol{h}=-\mathbf{8} .2 \text { (1.d.p.) }
\end{gathered}
$$

(e)

$$
\begin{aligned}
\therefore \text { Volume of water } & =\frac{1}{3} \pi(7)^{2}\left(\left(\frac{2+\sqrt{340}}{2}\right)-\frac{512}{\left(\frac{2+\sqrt{340}}{2}\right)^{2}}\right) \\
& =272.838007 \ldots \\
& =\mathbf{2 7 3} \mathbf{c m}^{\mathbf{3}}(\mathbf{3 . s . f .})
\end{aligned}
$$

16 Coordinate Geometry

16.1 Full Solutions

1. (a) Given that $5 O A=3 O B$

$$
\frac{O A}{O C}=\frac{3}{5}
$$

\therefore Gradient of line is $=-\frac{3}{5}$
Hence,

$$
\begin{aligned}
6 & =-\frac{3}{5}(5)+c \\
c & =9
\end{aligned}
$$

$\therefore y$-intercept $=9$ (shown)
(b) By inspection,

$$
A(0,9) \quad D(0,3)
$$

(c) By inspection,

$$
\text { Length of } O A=9 \text { units }
$$

$$
\therefore E(5,15)
$$

(d)

$$
\begin{aligned}
\text { Area of parallelogram } & =9 \times 5 \\
& =45 \text { units }^{2}
\end{aligned}
$$

2. (a)

$$
\text { Gradient of } \begin{aligned}
P Q & =\frac{0-(-6)}{5-0} \\
& =\frac{6}{5} \\
\therefore \boldsymbol{y}=\frac{\mathbf{6}}{\mathbf{5}} \boldsymbol{x} & -\mathbf{6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{1}{2}(10)(k) & =40 \\
k & =8(\text { shown })
\end{aligned}
$$

(c) (i)

$$
\text { Length of } \begin{aligned}
P Q & =\sqrt{(5-0)^{2}+(0+6)^{2}} \\
& =\sqrt{61} \\
& =\mathbf{7 . 8 1} \text { units (3.s.f.) }
\end{aligned}
$$

At S,

$$
\begin{aligned}
y & =\frac{6}{5}(8)-6 \\
& =3.6 \\
& \therefore S(8,3.6) \\
\text { Length of } P S & =\sqrt{(5-8)^{2}+(0-3.6)^{2}} \\
& =\sqrt{21.96} \\
& =4.69 \text { units (3.s.f.) }
\end{aligned}
$$

(ii)

$$
\begin{gather*}
\frac{P Q}{P S}=\frac{\sqrt{61}}{\sqrt{21.96}} \\
=\frac{5}{3} \\
\frac{P O}{P T}=\frac{5}{3} \\
\therefore \frac{P O}{P T}=\frac{P Q}{P S} \quad(\mathrm{SS}) \tag{SS}\\
\angle O P Q=\angle T P S \text { (vertically opposite angles) (A) }
\end{gather*}
$$

Since there are 2 sides with the same ratio and one same angle, $\triangle P Q O$ and $\triangle P S T$ are similar
3. (a)

$$
\begin{aligned}
\text { Gradient } & =\frac{4-(-8)}{-10-5} \\
& =-\frac{4}{5} \\
\therefore y= & -\frac{4}{5} x+c
\end{aligned}
$$

Substitute (5, -8) into the line,

$$
\begin{aligned}
-8 & =-\frac{4}{5}(5)+c \\
c & =-4 \\
\therefore \boldsymbol{y} & =-\frac{4}{5} \boldsymbol{x}-\mathbf{4}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
4 x+5 y & =10 \\
y & =-\frac{4}{5} x+2
\end{aligned}
$$

Both l and $A B$ have the same gradient, implying that they are parallel. Since they do not have the same y-intercept, the lines do not intersect at all
(ii) Substitute $x=10$ into l,

$$
\begin{aligned}
y & =-\frac{4}{5}(10)+2 \\
& =-6 \neq 10
\end{aligned}
$$

Hence, the point $C(10,-10)$ do not lie on the line l
(iii)

$$
\text { Equation 1: } y=\frac{1}{5} x^{3}-x^{2}-2
$$

Equation 2: $y=-\frac{4}{5} x+2$
Let Equation (1) = Equation (2),

$$
\begin{aligned}
& \frac{1}{5} x^{3}-x^{2}-2=-\frac{4}{5} x+2 \\
& x^{2}-5 x^{2}-10=-4 x+10 \\
& x^{3}-5 x^{2}+4 x-20=0 \\
& \therefore \boldsymbol{p}=-\mathbf{5} \quad \boldsymbol{q}=\mathbf{4}
\end{aligned}
$$

17 Vectors in 2 Dimensions

17.1 Full Solutions

1. (a) (i)

$$
\begin{aligned}
|\mathbf{u}-\mathbf{v}| & =\left|\binom{8}{-2}-\binom{2}{6}\right| \\
& =\left|\binom{6}{-8}\right| \\
& =\sqrt{(6)^{2}+(-8)^{2}} \\
& =\sqrt{100} \\
& =\mathbf{1 0} \text { units }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
2 \mathbf{v}+\mathbf{u} & =2\binom{2}{6}+\binom{8}{-2} \\
& =\binom{\mathbf{1 2}}{\mathbf{1 0}}
\end{aligned}
$$

(b) By inspection

$$
h=10 \quad \text { or } \quad h=-\mathbf{4}
$$

2. (a) (i)

$$
\overrightarrow{A B}=\mathbf{b}-\mathbf{2 a}
$$

(ii)

$$
\overrightarrow{O C}=\mathbf{b}+\mathbf{3 a}
$$

(iii)

$$
\overrightarrow{O X}=\frac{\mathbf{2}}{\mathbf{3}}(\mathbf{b}+\mathbf{3 a})
$$

(iv)

$$
\begin{aligned}
\overrightarrow{A X} & =\overrightarrow{A O}+\overrightarrow{O X} \\
& =-2 \mathbf{a}+\frac{2}{5} \mathbf{b}+\frac{6}{5} \mathbf{a} \\
& =-\frac{\mathbf{4}}{\mathbf{5}} \mathbf{a}+\frac{\mathbf{2}}{\mathbf{5}} \mathbf{b}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\overrightarrow{A B} & =\frac{5}{2}\left(-\frac{4}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}\right) \\
& =\frac{5}{2} \overrightarrow{A X}
\end{aligned}
$$

$\therefore A, X$ and B are collinear
(c) (i)

$$
\begin{aligned}
\overrightarrow{A Z} & =h \overrightarrow{A Y} \\
\overrightarrow{A Y} & =\overrightarrow{A B}+\overrightarrow{B Y} \\
& =\mathbf{b}-\frac{1}{2} \mathbf{a} \\
\overrightarrow{A Z} & =\boldsymbol{h} \mathbf{b}-\frac{1}{2} \boldsymbol{h} \mathbf{a}
\end{aligned}
$$

(ii)

$$
\overrightarrow{A Z}=-2 \mathbf{a}+k \mathbf{b}
$$

(iii)

$$
\mathbf{b} h-\frac{1}{2} h \mathbf{a}=2 \mathbf{a}+k \mathbf{b}
$$

Comparing terms,

$$
h=4 \quad \text { and } \quad k=4
$$

(d) (i)

$$
\frac{\text { Area of } \triangle O A X}{\text { Area of } \triangle O A C}=\frac{\mathbf{2}}{\mathbf{5}}
$$

(ii)

$$
\begin{aligned}
\frac{\text { Area of } \triangle O B X}{\text { Area of } \triangle A B C} & =\frac{3}{5} \times \frac{2}{3} \\
& =\frac{\mathbf{2}}{\mathbf{5}}
\end{aligned}
$$

3. (a) (i) (a)

$$
\begin{aligned}
\overrightarrow{W M} & =\overrightarrow{W X}+\overrightarrow{X M} \\
& =6 \mathbf{p}+3 \mathbf{q}+\frac{3}{5}(10 \mathbf{p}-5 \mathbf{q}) \\
& =\mathbf{1 2} \mathbf{p}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\overrightarrow{Z M} & =\overrightarrow{Z Y}+\overrightarrow{Y M} \\
& =6 \mathbf{p}+3 \mathbf{q}+\frac{2}{5}(-10 \mathbf{p}+5 \mathbf{q}) \\
& =\mathbf{2} \mathbf{p}+\mathbf{5} \mathbf{q}
\end{aligned}
$$

(ii) (a)

$$
\begin{aligned}
\text { Ratio } & =\frac{\text { Area of } \triangle W M X}{\text { Area of } \triangle W X Y} \times \frac{\text { Area of } \triangle W X Y}{\text { Area of } W X Y Z} \\
& =\frac{3}{5} \times \frac{1}{2} \\
& =\frac{3}{10}
\end{aligned}
$$

$$
\therefore 3: 10
$$

(b)

$$
\begin{aligned}
& \text { Area of } W X Y Z=\frac{10}{3} \times 8 \\
& =26 \frac{2}{3} \text { units }^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\overrightarrow{W N} & =\frac{5}{2}(6 \mathbf{p}+3 \mathbf{q}) \\
& =\frac{\mathbf{1 5}}{\mathbf{2}}(\mathbf{2} \mathbf{p}+\mathbf{q})
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\overrightarrow{A B} & =\binom{3}{-3}+\binom{7}{-13} \\
& =\binom{\mathbf{1 0}}{\mathbf{- 1 6}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Acute angle } & =\tan ^{-1}\left(\frac{16}{10}\right) \\
& =57.994 \ldots \\
& =\mathbf{5 8 . \mathbf { 0 } ^ { \circ }} \text { (1.d.p.) }
\end{aligned}
$$

(iii)

$$
\overrightarrow{A B}=k\binom{n}{-\mathbf{2 m}}
$$

(iv)

$$
\binom{30}{-48} \quad \text { or } \quad\binom{-30}{48}
$$

4. (a) (i)

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =8 \mathbf{b}-12 \mathbf{a} \\
\overrightarrow{A Q} & =4 \mathbf{b}-\mathbf{6 a}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\overrightarrow{B P} & =\overrightarrow{B O}-\overrightarrow{O P} \\
& =-\mathbf{8} \mathbf{b}+\mathbf{a}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\overrightarrow{Q P} & =\overrightarrow{Q A}-\overrightarrow{A P} \\
& =-4 \mathbf{b}+6 \mathbf{a}-4 \mathbf{a} \\
& =\mathbf{2} \mathbf{a}-\mathbf{4} \mathbf{b}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\overrightarrow{P R} & =4 \overrightarrow{P Q} \\
\overrightarrow{O R}-\overrightarrow{O P} & =4(4 \mathbf{b}-2 \mathbf{a}) \\
\overrightarrow{O R} & =\mathbf{1 6} \mathbf{b}
\end{aligned}
$$

(c) $\bullet \overrightarrow{O B}$ is parallel to $\overrightarrow{O R}$ and since O is a common point. Hence, O, B and R are collinear.

- $\overrightarrow{O R}=2 \overrightarrow{O B}$
- B is the midpoint of $\overrightarrow{O R}$
(d)

$$
\begin{aligned}
\overrightarrow{Q P} & =\overrightarrow{B S} \\
2 \mathbf{a}-4 \mathbf{b} & =\overrightarrow{O S}-8 \mathbf{b} \\
\overrightarrow{O S} & =\mathbf{2 a}+\mathbf{4} \mathbf{b}
\end{aligned}
$$

(e)

$$
\text { Area of } \begin{aligned}
\triangle O B P & \text { Area of } \begin{aligned}
& \triangle O R A \text { Area of } \triangle O B P \\
& \text { Area of } \triangle O B A
\end{aligned} \frac{\text { Area of } \triangle O B A}{\text { Area of } \triangle O R A} \\
& =\frac{2}{3} \times \frac{1}{2} \\
& =\frac{\mathbf{1}}{\mathbf{3}}
\end{aligned}
$$

(f)

$$
\begin{aligned}
\overrightarrow{A B} & =8\binom{-1}{-1}-12\binom{-1}{1} \\
& =\binom{4}{-20} \\
|\overrightarrow{A B}| & =\sqrt{(4)^{2}+(-20)^{2}} \\
& =\mathbf{2 0 . 4} \text { units }(\mathbf{3 . s . f .})
\end{aligned}
$$

18 Data Analysis \& Handling

18.1 Full Solutions

1. (a) (i)

$$
\text { Median mass }=\mathbf{5 5} \mathrm{g}
$$

(ii)

$$
\begin{aligned}
\text { Percentage } & =\frac{170-50}{200} \times 100 \% \\
& =\mathbf{6 0 \%}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Interquartile range } & =59 \mathrm{~g}-51 \mathrm{~g} \\
& =\mathbf{8 g}
\end{aligned}
$$

(b) (i) Agree. Sunny Farm has a lower interquartile range than Happy Farm
(ii) Disagree. The box-and-whisker plot does not provide information on number of eggs which has masses equal to or more than 62g. From the box-and-whisker plot, we could only tell that Happy Farm's upper quartile is 60 g which means that 25% of eggs have masses more than 60 g
(c) (i)

$$
\mathrm{P}(\text { both from Administrative Department })=\frac{\mathbf{2}}{\mathbf{1 4 5}}
$$

(ii)

$$
\begin{aligned}
\mathrm{P}(\text { at least one from Administrative Department } & =1-\left(\frac{26}{30}\right)\left(\frac{25}{29}\right) \\
& =\frac{\mathbf{2 2}}{\mathbf{8 7}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\mathrm{P}(\text { one male and female from Farming and Outdoors }) & =2\left(\frac{20}{30}\right)\left(\frac{6}{29}\right) \\
& =\frac{\mathbf{8}}{\mathbf{2 9}}
\end{aligned}
$$

2. (a) (i)

$$
83 \mathrm{~km} / \mathrm{h}
$$

(ii)

$$
15 \mathrm{~km} / \mathrm{h}
$$

(b)

$$
15 \%
$$

(c) - The median speed of the cars at $6: 30 \mathrm{pm}$ is $45 \mathrm{~km} / \mathrm{h}$ which is lower than that at 11 am . Therefore, the cars are travelling slower at 6:30pm

- The Interquartile Range of the speed of the cars at $6: 30 \mathrm{pm}$ is $8 \mathrm{~km} / \mathrm{h}$ which is smaller than that at 11 am . Hence, the speed of the cars is more consistent at 6:30pm
(d) Heavy traffic during peak hours

3. (a) (i)

$28.5^{\circ} \mathrm{C}$

(ii)

$$
\begin{aligned}
\text { Interquartile Range } & =28.9-28.2 \\
& =\mathbf{0 . 7}{ }^{\circ} \mathbf{C}
\end{aligned}
$$

(b)

12 days

(c) The temperature at Jurong have a larger spread/less consistent than the temperatures at Simei
(d) Based on the given formula, the interquartile range does not get affected by the " +32 " as 32 will be added to every temperature. However, the product $\times 1.8$ will affect

$$
\begin{aligned}
\text { New Interquartile Range } & =1.8 \times 1.5 \\
& =\mathbf{2 . 7}{ }^{\circ} \mathbf{F}
\end{aligned}
$$

4. (a) (i)

$$
\begin{aligned}
\text { Mean } & =\frac{5(10)+15(25)+25(80)+35(65)+45(20)}{200} \\
& =\mathbf{2 8} \mathbf{~ m}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Mean } & =\sqrt{\frac{5(10)^{2}+15(25)^{2}+25(80)^{2}+35(65)^{2}+45(20)^{2}}{200}-(28)^{2}} \\
& =\mathbf{9 . 8 0} \mathbf{~ m}
\end{aligned}
$$

(b) - The trees in Rainforest A are generally taller as their mean height of 28 m is higher than 20.1 m of Tropical Forest B

- The height of trees in Rainforest A are generally more widespread as they have a higher standard deviation of 9.80 as compared to Tropical Forest B of 4.53 m
(c) (i)

$$
\begin{aligned}
\mathrm{P}(\text { height } \geq 40 \mathrm{~m}) & =\frac{20}{200} \\
& =\frac{\mathbf{1}}{\mathbf{1 0}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathrm{P}(\text { height }<30 \mathrm{~m}) & =\frac{80+25+10}{200} \\
& =\frac{\mathbf{2 3}}{\mathbf{4 0}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\mathrm{P}(\text { both tress less than } 20 \mathrm{~m}) & =\left(\frac{35}{200}\right)\left(\frac{34}{199}\right) \\
& =\frac{\mathbf{1 1 9}}{\mathbf{3 9 8 0}}
\end{aligned}
$$

19 Probability

19.1 Full Solutions

1. (a) (i) Tree Diagram

(ii)

$$
\begin{aligned}
\mathrm{P}(\text { qualify for next round }) & =\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{WD})+\mathrm{P}(\mathrm{DW}) \\
& =(0.6)(0.6)+(0.6)(0.3)+(0.3)(0.6) \\
& =\mathbf{0 . 7 2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{P}(\mathrm{R}) & =\frac{2}{2+x} \\
\mathrm{P}(\mathrm{RR}) & =\left(\frac{2}{2+x}\right)\left(\frac{1}{1+x}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
&\left(\frac{2}{2+x}\right)\left(\frac{1}{1+x}\right)=\frac{1}{10} \\
&(2+x)(1+x)=20 \\
& x^{2}+3 x-18=0 \\
&(x+6)(x-3)=0 \\
& x=\mathbf{3} \quad \text { or } \quad x=-6(\mathrm{rej})
\end{aligned}
$$

2. (a) Tree Diagram

(b) (i)

$$
\begin{aligned}
\mathrm{P}(2 \text { socks are white }) & =\left(\frac{6}{8}\right)\left(\frac{5}{7}\right) \\
& =\frac{\mathbf{1 5}}{\mathbf{2 8}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathrm{P}(3 \text { rd sock same colour as first sock }) & =\left(\frac{2}{8}\right)\left(\frac{6}{7}\right)\left(\frac{1}{6}\right)+\left(\frac{6}{8}\right)\left(\frac{2}{7}\right)\left(\frac{5}{6}\right) \\
& =\frac{\mathbf{3}}{\mathbf{1 4}}
\end{aligned}
$$

3. (a) Possibility Diagram:

	2	3	6	9
2		$(2,3)$	$(2,6)$	$(2,9)$
3	$(3,2)$		$(3,6)$	$(3,9)$
6	$(6,2)$	$(6,3)$		$(6,9)$
9	$(9,2)$	$(9,3)$	$(9,6)$	

(b) (i)

$$
\begin{aligned}
\mathrm{P}(\text { numbers less than } 6) & =\frac{2}{12} \\
& =\frac{\mathbf{1}}{\mathbf{6}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\mathrm{P}(\text { both odd numbers }) & =\frac{2}{12} \\
& =\frac{\mathbf{1}}{\mathbf{6}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\mathrm{P}(\text { product more than } 10) & =1-\mathrm{P}(\text { product less than } 10) \\
& =1-\frac{1}{6} \\
& =\frac{\mathbf{5}}{\mathbf{6}}
\end{aligned}
$$

(c) With replacement,
$\mathrm{P}($ product more than 10$)=12\left(\frac{1}{16}\right)=\frac{3}{4}<\frac{5}{6}$
Hence, the claim is not true
4. (a)

$$
\begin{aligned}
\mathrm{P}(1 \text { st fail, 2nd pass }) & =\left(\frac{1}{10}\right)\left(\frac{9}{10}\right) \\
& =\frac{\mathbf{9}}{\mathbf{1 0 0}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\mathrm{P}(\text { at least } 2 \text { attempts } & =1-\mathrm{P}(1 \text { st attempt pass }) \\
& =1-\frac{9}{10} \\
& =\frac{\mathbf{1}}{\mathbf{1 0}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathrm{P}(1 \text { st fail, 2nd fail, } \ldots, \text { nth fail } & =\left(\frac{1}{10}\right) \times\left(\frac{1}{10}\right) \times \ldots \times\left(\frac{1}{10}\right) \\
& =\left(\frac{\mathbf{1}}{\mathbf{1 0}}\right)^{n}
\end{aligned}
$$

(d)
$\mathrm{P}\left(\right.$ pass in one of the first nth months $=\mathbf{1}-\left(\frac{\mathbf{1}}{\mathbf{1 0}}\right)^{n}$

