February Practice Questions 2022 Full Solutions (A-Math)

Copyright

All materials prepared in this Practice Questions set are prepared by the original tutor (Kaiwen). All rights reserved. No part of any materials provided may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without prior written permission of the tutor

Question Source

All questions are sourced and selected based on the known abilities of students sitting for the ' O ' Level A-Math Examination. All questions compiled here are from 2009-2021 School Mid-Year / Prelim Papers. Questions are categorised into the various topics and range in varying difficulties. If questions are sourced from respective sources, credit will be given when appropriate.

How to read:
[S4 ABCSS P1/2011 PRELIM Qn 1]
Secondary 4, ABC Secondary School, Paper 1, 2011, Prelim, Question 1

Syllabus (4049)

Algebra	Geometry and Trigonometry	Calculus
Quadratic Equations \& Inequalities	Trigonometry	Differentiation
Surds	Coordinate Geometry	Integration
Polynomials	Further Coordinate Geometry	Kinematics
Simultaneous Equations	Linear Law	
Partial Fractions	Proofs of Plane Geometry	
Binomial Theorem		
Exponential \& Logarithms		

Contents

1 Quadratic Equations \& Inequalities 3
1.1 Full Solutions 3
2 Surds 6
2.1 Full Solutions 6
3 Polynomials 9
3.1 Full Solutions 9
4 Partial Fractions 13
4.1 Full Solutions 13
5 Binomial Theorem 17
5.1 Full Solutions 17
6 Exponential \& Logarithms 23
6.1 Full Solutions 23
7 Trigonometry 27
7.1 Full Solutions 27
8 Coordinate Geometry 33
8.1 Full Solutions 33
9 Further Coordinate Geometry 38
9.1 Full Solutions 38
10 Linear Law 44
10.1 Full Solutions 44
11 Proofs of Plane Geometry 50
11.1 Full Solutions 50
12 Differentiation 54
12.1 Full Solutions 54
13 Integration 58
13.1 Full Solutions 58
14 Differentiation \& Integration 61
14.1 Full Solutions 61
15 Kinematics 67
15.1 Full Solutions 67

1 Quadratic Equations \& Inequalities

1.1 Full Solutions

1. (a) Since the expression is never negative, $b^{2}-4 a c<0$

$$
\begin{aligned}
(-2 p)^{2}-4(1)\left(2 p^{2}-\frac{1}{4}(5 p+6)\right) & <0 \\
4 p^{2}-4\left(2 p^{2}-\frac{5}{4} p-\frac{6}{4}\right) & <0 \\
4 p^{2}-8 p^{2}+5 p+6 & <0 \\
4 p^{2}-5 p-6 & >0 \\
(4 p+3)(p-2) & >0
\end{aligned}
$$

(b) (i) By completing the square,

$$
\begin{aligned}
-x^{2}+12 x-37 & =-\left(x^{2}-12 x+37\right) \\
& =-\left[(x-6)^{2}-36+37\right] \\
& =-(\boldsymbol{x}-\mathbf{6})^{2}-\mathbf{1}
\end{aligned}
$$

(ii) Curve of $y=-x^{2}+12 x-37$

(iii) Range of y :

$$
y \leq-1
$$

2.

$$
\begin{aligned}
(x-a)(b-x) & =m \\
x b-x^{2}-a b+a x-m & =0 \\
-x^{2}+(a+b) x-a b-m & =0 \\
x^{2}-(a+b) x+(a b+m) & =0
\end{aligned}
$$

Since the roots are equal, $b^{2}-4 a c=0$

$$
\begin{array}{r}
(a+b)^{2}-4(1)(a b+m)=0 \\
a^{2}+2 a b+b^{2}-4 a b-4 m=0 \\
a^{2}-2 a b+b^{2}-4 m=0 \\
(a-b)^{2}-4 m=0 \\
\boldsymbol{m}=\left(\frac{\boldsymbol{a}-\boldsymbol{b}}{\mathbf{2}}\right)^{2}(\text { shown })
\end{array}
$$

3. (a)

$$
\begin{aligned}
p x^{2}+4 x+p & >3 \\
p x^{2}+4 x+(p-3) & >0
\end{aligned}
$$

Since the quadratic equation is strictly positive, $b^{2}-4 a c<0$

$$
\begin{aligned}
(4)^{2}-4(p)(p-3) & <0 \\
16-4 p^{2}+12 p & <0 \\
4 p^{2}-12 p-16 & >0 \\
p^{2}-3 p-4 & >0 \\
(p-4)(p+1) & >0 \\
\therefore p>4 \quad \text { or } \quad p & <-1
\end{aligned}
$$

Note that a condition for the expression to always be positive is that the coefficient of x^{2} must always be positive

$$
\therefore p>4
$$

(b)

Equation 1: $x=k-5 y$
Equation 2: $5 x^{2}+5 x y+4=0$
Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
5(k-5 y)^{2}+5(k-5 y) y+4 & =0 \\
5 k^{2}-50 k y+125 y^{2}+5 k y-25 y^{2}+4 & =0 \\
100 y^{2}-45 k y+\left(5 k^{2}+4\right) & =0
\end{aligned}
$$

Since the line does not intersect the curve, $b^{2}-4 a c<0$

$$
\begin{gathered}
(45 k)^{2}-4(100)\left(5 k^{2}+4\right)<0 \\
2025 k^{2}-2000 k^{2}-1600<0 \\
k^{2}-64<0 \\
\therefore-\mathbf{8}<\boldsymbol{k}<\mathbf{8}
\end{gathered}
$$

4.

$$
\begin{array}{r}
y=x^{2} \ldots \\
y=p x-q^{2} \tag{2}
\end{array}
$$

Let Equation (1) = Equation (2),

$$
\begin{aligned}
x^{2} & =p x-q^{2} \\
x^{2}-p x+q^{2} & =0
\end{aligned}
$$

Since the curve lies above the line, there is no intersection, $b^{2}-4 a c<0$

$$
\begin{array}{r}
(-p)^{2}-4(1)\left(q^{2}\right)<0 \\
p^{2}-4 q^{2}<0
\end{array}
$$

From the given range,

$$
\begin{gathered}
-2<p<2 \\
(p-2)(p+2)<0 \\
p^{2}-4<0
\end{gathered}
$$

By comparison,

$$
\begin{aligned}
4 q^{2} & =4 \\
\boldsymbol{q} & = \pm \mathbf{1}
\end{aligned}
$$

2 Surds

2.1 Full Solutions

1. (a) We first solve for $(1-\sqrt{a})^{5}$,

$$
\begin{aligned}
(1-\sqrt{a})^{2} & =1-2 \sqrt{a}+a \\
(1-\sqrt{a})^{4} & =(1-2 \sqrt{a}+a)^{2} \\
& =1-2 \sqrt{a}+a-2 \sqrt{a}+4 a-2 a \sqrt{a}+a-2 a \sqrt{a}+a^{2} \\
& =1-4 \sqrt{a}-4 a \sqrt{a}+6 a+a^{2} \\
\therefore(1-\sqrt{a})^{5} & =\left(1-4 \sqrt{a}-4 a \sqrt{a}+6 a+a^{2}\right)(1-\sqrt{a}) \\
& =1-\sqrt{a}-4 \sqrt{a}+4 a-4 a \sqrt{a}+4 a^{2}+6 a-6 a \sqrt{a}+a^{2}-a^{2} \sqrt{a} \\
& =1-5 \sqrt{a}-10 a \sqrt{a}-a^{2} \sqrt{a}+10 a+5 a^{2}
\end{aligned}
$$

Next, for $(1+\sqrt{a})^{5}$, by inspection,

$$
(1+\sqrt{a})^{5}=1+5 \sqrt{a}+10 a \sqrt{a}+a^{2} \sqrt{a}+10 a+5 a^{2}
$$

$$
\begin{aligned}
& \therefore(1-\sqrt{a})^{5}-(1+\sqrt{a})^{5} \\
& \quad=\left[1-5 \sqrt{a}-10 a \sqrt{a}-a^{2} \sqrt{a}+10 a+5 a^{2}\right]-\left[1+5 \sqrt{a}+10 a \sqrt{a}+a^{2} \sqrt{a}+10 a+5 a^{2}\right] \\
& \quad=1-5 \sqrt{a}-10 a \sqrt{a}-a^{2} \sqrt{a}+10 a+5 a^{2}-1-5 \sqrt{a}-10 a \sqrt{a}-a^{2} \sqrt{a}-10 a-5 a^{2} \\
&=-\mathbf{1 0} \sqrt{\boldsymbol{a}}-\mathbf{2 0 a} \sqrt{\boldsymbol{a}}-\mathbf{2} \boldsymbol{a}^{2} \sqrt{\boldsymbol{a}} \text { (shown) }
\end{aligned}
$$

(b) By comparing part (a) and (b),

$$
\begin{aligned}
\therefore(1-\sqrt{3})^{5}-(1+\sqrt{3})^{5} & =-10 \sqrt{3}-20(3) \sqrt{3}-2(3)^{2} \sqrt{3} \\
& =-\mathbf{8 8} \sqrt{\mathbf{3}}
\end{aligned}
$$

Alternative method for part (a)

The intial part of the question can also be solved using the Binomial Theorem

$$
\begin{aligned}
& (1-\sqrt{a})^{5} \\
& =1+\binom{5}{1}(-\sqrt{a})+\binom{5}{2}(-\sqrt{a})^{2}+\binom{5}{3}(-\sqrt{a})^{3}+\binom{5}{4}(-\sqrt{a})^{4}+(-\sqrt{a})^{5} \\
& =1-5 \sqrt{a}+10 a-10 a^{1 \frac{1}{2}}+5 a^{2}-a^{2 \frac{1}{2}} \\
& =1-5 a-10 a \sqrt{a}-a^{2} \sqrt{a}+10 a+5 a^{2}
\end{aligned}
$$

The remaining part of the question is the same
2. Using the volume formula for geometrically similar solids,

$$
\begin{aligned}
& \frac{V_{\text {small }}}{V_{\text {large }}}=\left(\frac{l_{\text {small }}}{l_{\text {large }}}\right)^{3} \\
& \frac{1}{2 \sqrt{2}}=\left(\frac{\frac{3+2 \sqrt{2}}{(1-\sqrt{2})^{2}}}{l_{\text {large }}}\right)^{3} \\
& \begin{aligned}
\left(l_{\text {large }}\right)^{3} & =2 \sqrt{2}\left(\frac{3+2 \sqrt{2}}{(1-\sqrt{2})^{2}}\right)^{3} \\
& =2 \sqrt{2}\left(\frac{3+2 \sqrt{2}}{1-2 \sqrt{2}+2}\right)^{3} \\
& =2 \sqrt{2}\left(\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}\right)^{3} \\
& =2 \sqrt{2}\left(\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}} \times \frac{3+2 \sqrt{2}}{3+2 \sqrt{2}}\right)^{3} \\
& =2 \sqrt{2}(9+12 \sqrt{2}+8)^{3} \\
& =2 \sqrt{2}(17+12 \sqrt{2})^{3} \\
& =\sqrt{8}(17+12 \sqrt{2})^{3} \\
\therefore l_{\text {large }} & =\sqrt[3]{\sqrt{8}(17+12 \sqrt{2})^{3}} \\
& =\sqrt{2}(17+12 \sqrt{2}) \\
& =\mathbf{1 7} \sqrt{2}+\mathbf{2 4} \mathbf{~ c m}
\end{aligned}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\left(\frac{4}{2+\sqrt{5}}-3-2 \sqrt{5}\right)^{2} & =\left(\frac{4}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}-3-2 \sqrt{5}\right)^{2} \\
& =\left(\frac{8-4 \sqrt{5}}{-1}-3-2 \sqrt{5}\right)^{2} \\
& =(4 \sqrt{5}-8-3-2 \sqrt{5})^{2} \\
& =(2 \sqrt{5}-11)^{2} \\
& =20-44 \sqrt{5}+121 \\
& =\mathbf{1 4 1}-\mathbf{4 4} \sqrt{\mathbf{5}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
a b-4 b+a-4 & =a b+a-4 b-4 \\
& =a(b+1)-4(b+1) \\
& =(a-4)(b+1)
\end{aligned}
$$

Since $6^{x}=2^{x} \times 3^{x}$, let $a=2^{x}$ and $b=3^{x}$

$$
\begin{gathered}
6^{x}-4\left(3^{x}\right)+2^{x}-4=0 \\
\left(2^{x}-4\right)\left(3^{x}+1\right)=0 \\
2^{x}=4 \quad \text { or } \quad 3^{x}=-1(\mathrm{rej}) \\
\therefore \boldsymbol{x}=\mathbf{2}
\end{gathered}
$$

4. Using the volume formula for a prism,

$$
\begin{aligned}
\text { Volume of prism } & =(\text { Base Area) }(\text { Height }) \\
11+6 \sqrt{3} & =(2+\sqrt{3})^{2}(\text { Height }) \\
\text { Height } & =\frac{(11+6 \sqrt{3})}{(2+\sqrt{3})^{2}} \\
& =\frac{11+6 \sqrt{3}}{4+4 \sqrt{3}+3} \\
& =\frac{11+6 \sqrt{3}}{7+4 \sqrt{3}} \\
& =\frac{11+6 \sqrt{3}}{7+4 \sqrt{3}} \times \frac{7-4 \sqrt{3}}{7-4 \sqrt{3}} \\
& =\frac{77-44 \sqrt{3}+42 \sqrt{3}-72}{1} \\
& =5-2 \sqrt{3} \\
\therefore \text { Height } & =(\mathbf{5}-\mathbf{2} \sqrt{3}) \mathbf{m}
\end{aligned}
$$

3 Polynomials

3.1 Full Solutions

1. (a) Since $x^{2}+x-2$ is a factor,

$$
\begin{gathered}
x^{2}+x-2=(x+2)(x-1) \\
\therefore f(x)=(x+2)(x-1) Q_{1}(x)
\end{gathered}
$$

Let $f(-2)=0$

$$
\begin{align*}
3(-2)^{3}+a(-2)^{2}-b(-2)-10 & =0 \\
4 a+2 b & =24 \\
2 a+b & =17 \tag{1}
\end{align*}
$$

Let $f(1)=0$

$$
\begin{align*}
3(1)^{3}+a(1)^{2}-b(1)-10 & =0 \\
a-b & =7 \\
a & =7+b \tag{2}
\end{align*}
$$

Substitute Equation (2) into Equation (1),

$$
\begin{aligned}
2(7+b)+b & =17 \\
3 b & =3 \\
\boldsymbol{b} & =\mathbf{1}
\end{aligned}
$$

Substitute $b=1$ into Equation (2),

$$
\begin{aligned}
& a=7+1 \\
& a=8
\end{aligned}
$$

(b) By observation,

$$
\begin{aligned}
f(x) & =3 x^{2}+8 x^{2}-x-10 \\
& =\left(x^{2}+x-2\right)(3 x+5) \\
& =(\boldsymbol{x}+\mathbf{2})(\boldsymbol{x}-\mathbf{1})(\mathbf{3} \boldsymbol{x}+\mathbf{5})
\end{aligned}
$$

(c)

$$
f(x)=(2 x-1) Q_{2}(x)+R
$$

Let $x=\frac{1}{2}$,

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =\left(\frac{1}{2}+2\right)\left(\frac{1}{2}-1\right)\left(3\left(\frac{1}{2}\right)+5\right) \\
& =-\mathbf{8} \frac{\mathbf{1}}{\mathbf{8}}
\end{aligned}
$$

2. (a) (i) Since the coefficient of x^{3} is 2 and the roots of the equation $f(x)=0$ are $-1,3$ and k

$$
f(x)=2(x+1)(x-3)(x-k)
$$

Since $f(x)$ has a remainder of 20 when divided by $(x-4)$,

$$
2(x+1)(x-3)(x-k)=(x-4) Q_{1}(x)+20
$$

Let $x=4$,

$$
\begin{aligned}
2((4)+1)((4)-3)((4)-k) & =20 \\
4-k & =2 \\
k & =2 \text { (shown) }
\end{aligned}
$$

(ii)

$$
f(x)=2(x+1)(x-3)(x-2)
$$

To find the remainder when divided by $(2 x-1)$,

$$
2(x+1)(x-3)(x-2)=(2 x-1) Q_{2}(x)+R
$$

Let $x=\frac{1}{2}$,

$$
\begin{aligned}
\therefore R & =2\left(\frac{1}{2}+1\right)\left(\frac{1}{2}-3\right)\left(\frac{1}{2}-2\right) \\
& =\mathbf{1 1} \frac{\mathbf{1}}{\mathbf{4}}
\end{aligned}
$$

(b) Given that $x^{10}-p x^{3}+q$ is divided by $x^{2}-1$,

$$
\begin{aligned}
& x^{10}-p x^{3}+q=\left(x^{2}-1\right) Q_{3} x+(4 x+3) \\
& x^{10}-p x^{3}+q=(x-1)(x+1) Q_{3} x+(4 x+3)
\end{aligned}
$$

Let $x=1$,

$$
\begin{align*}
(1)^{10}-p(1)^{3}+q & =4(1)+3 \\
q-p & =6 \ldots \ldots .(1) \tag{1}
\end{align*}
$$

Let $x=-1$,

$$
\begin{aligned}
(-1)^{10}-p(-1)^{3}+q & =4(-1)+3 \\
p+q & =-2 \ldots \ldots .(2)
\end{aligned}
$$

Take Equation (2) - Equation (1),

$$
\begin{aligned}
2 p & =-8 \\
p & =-4
\end{aligned}
$$

Substitute $p=-4$,

$$
\begin{aligned}
q-(-4) & =6 \\
\boldsymbol{q} & =\mathbf{2}
\end{aligned}
$$

3. (a) Since the function is divisible by $(x-2)$

$$
\therefore f(x)=(x-2) Q_{1}(x)
$$

Let $f(2)=0$

$$
\begin{align*}
(2)^{3}+a(2)^{2}+b(2)+4 & =0 \\
4 a+2 b & =-12 \\
2 a+b & =-6 . \tag{1}
\end{align*}
$$

Since the function leaves a remainder of -3 when divided by $(x+1)$

$$
\therefore f(x)=(x+1) Q_{2}(x)-3
$$

Let $f(-1)=-3$,

$$
\begin{align*}
(-1)^{3}+a(-1)^{2}+b(-1)+4 & =-3 \\
a-b & =-6 \tag{2}
\end{align*}
$$

Take Equation (1) + Equation (2),

$$
\begin{aligned}
3 a & =-12 \\
a & =-4
\end{aligned}
$$

Substitute $a=-4$ into Equation (2),

$$
\begin{aligned}
-4-b & =-6 \\
\boldsymbol{b} & =\mathbf{2}
\end{aligned}
$$

(b)

$$
f(x)=x^{3}-4 x^{2}+2 x+4=(x-2)\left(x^{2}+p x-2\right)
$$

Comparing coefficients of x,

$$
\begin{aligned}
& 2=-2-2 p \\
& p=-2
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(x) & =(x-2)\left(x^{2}-2 x-2\right) \\
& =(x-2)\left[(x-1)^{2}-3\right] \\
& =(x-2)(x-\mathbf{1}+\sqrt{\mathbf{3}})(x-\mathbf{1}-\sqrt{\mathbf{3}})
\end{aligned}
$$

4. (a) Since the function is divisible by $(x+2)$

$$
\therefore f(x)=(x+2) Q_{1}(x)
$$

Let $f(-2)=0$

$$
\begin{align*}
2(-2)^{3}+a(-2)^{2}+b(-2)+8 & =0 \\
4 a-2 b & =8 \\
2 a-b & =4 \tag{1}
\end{align*}
$$

Since the function leaves a remainder of 10 when divided by $(2 x-1)$

$$
\therefore f(x)=(2 x-1) Q_{2}(x)+10
$$

Let $f\left(\frac{1}{2}\right)=10$

$$
\begin{align*}
2\left(\frac{1}{2}\right)^{3}+a\left(\frac{1}{2}\right)^{2}+b\left(\frac{1}{2}\right)+8 & =10 \\
\frac{1}{4} a+\frac{1}{2} b & =1 \frac{3}{4} \\
a & =7-2 b \tag{2}
\end{align*}
$$

Substitute Equation (2) into Equation (1),

$$
\begin{aligned}
2(7-2 b)-b & =4 \\
\boldsymbol{b} & =\mathbf{2}
\end{aligned}
$$

Substitute $b=2$ into Equation (2),

$$
\begin{aligned}
& a=7-2(2) \\
& \boldsymbol{a}=\mathbf{3}
\end{aligned}
$$

(b)

$$
f(x)=2 x^{3}+3 x^{2}+2 x+8=(x+2)\left(2 x^{2}+c x+4\right)
$$

Comparing coefficients,

$$
\begin{aligned}
3 x^{2} & =c x^{2}+4 x^{2} \\
c & =-1 \\
\therefore f(x)= & (x+2)\left(2 x^{2}-x+4\right)
\end{aligned}
$$

For $2 x^{2}-x+4$,

$$
\begin{aligned}
b^{2}-4 a c & =(-1)^{2}-4(2)(4) \\
& =-31<0
\end{aligned}
$$

Since the discriminant value of $2 x^{2}-x+4$ is less than 0 , the equation has no real roots.
So $P(x)=0$ has only one real root. $x=-2$

4 Partial Fractions

4.1 Full Solutions

1. (a)

$$
\left.\begin{array}{rl}
\frac{13 x-6}{2 x^{2}+3 x-9} & =\frac{13 x-6}{(2 x-3)(x+3)} \\
& =\frac{A}{2 x-3}+\frac{B}{x+3}
\end{array}\right] . \begin{aligned}
& \therefore 13 x-6=A(x+3)+B(2 x-3)
\end{aligned}
$$

Let $x=-3$,

$$
\begin{aligned}
13(-3)-6 & =B(2(-3)-3) \\
B & =5
\end{aligned}
$$

Let $x=\frac{3}{2}$,

$$
\begin{aligned}
13\left(\frac{3}{2}\right)-6 & =A\left[\left(\frac{3}{2}\right)+3\right] \\
A & =3 \\
\therefore \frac{13 x-6}{2 x^{2}+3 x-9} & =\frac{\mathbf{3}}{\mathbf{2 x - 3}}+\frac{\mathbf{5}}{\boldsymbol{x}+\mathbf{3}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{17 x-3}{2 x^{2}+3 x-9} d x & =\int\left(\frac{13 x-6}{2 x^{2}+3 x-9}+\frac{4 x+3}{2 x^{2}+3 x-9}\right) d x \\
& =\int \frac{3}{2 x-3} d x+\int \frac{5}{x+3} d x+\int \frac{4 x+3}{2 x^{2}+3 x+9} d x \\
& =\frac{\mathbf{3}}{\mathbf{2}} \ln |\mathbf{2} \boldsymbol{x}-\mathbf{3}|+\mathbf{5} \ln |x+\mathbf{3}|+\ln \left|\mathbf{2} \mathbf{x}^{2}+\mathbf{3 x}-\mathbf{9}\right|+\mathbf{c}
\end{aligned}
$$

2. The following is an improper fraction

$$
\frac{x^{4}-5 x^{3}+6 x^{2}-18}{x^{3}-3 x^{2}}
$$

By Long Division,

$$
\begin{gathered}
x-2 \\
\left.x^{3}-3 x^{2}\right) x^{4}-5 x^{3}+6 x^{2}-18 \\
-\frac{\left(x^{4}-3 x^{3}\right)}{-2 x^{3}+6 x^{2}-18} \\
\frac{-\left(-2 x^{3}+6 x^{2}\right)}{\underline{-18}} \\
\frac{x^{4}-5 x^{3}+6 x^{2}-18}{x^{3}-3 x^{2}}
\end{gathered} \begin{aligned}
& (x-2)-\frac{18}{x^{3}-3 x^{2}} \\
& =(x-2)-\frac{18}{x^{2}(x-3)}
\end{aligned}
$$

By partial fractions,

$$
\begin{aligned}
\frac{18}{x^{2}(x-3)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-3} \\
18 & =A x(x-3)+B(x-3)+C x^{2}
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
18 & =B(0-3) \\
B & =-6
\end{aligned}
$$

Let $x=3$,

$$
\begin{aligned}
18 & =C(3)^{2} \\
C & =2
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
& 18=A(1)((1)-3)-6((1)-3)+2(1)^{2} \\
& A=-2
\end{aligned} \quad \begin{aligned}
\therefore \frac{x^{4}-5 x^{3}+6 x^{2}-18}{x^{3}-3 x^{2}} & =(x-2)-\left(-\frac{2}{x}-\frac{6}{x^{2}}+\frac{2}{x-3}\right) \\
& =\boldsymbol{x}-\mathbf{2}+\frac{\mathbf{2}}{\boldsymbol{x}}+\frac{\mathbf{6}}{\boldsymbol{x}^{\mathbf{2}}}-\frac{\mathbf{2}}{\boldsymbol{x}-\mathbf{3}}
\end{aligned}
$$

3.

$$
\begin{gathered}
\frac{x-4}{(2 x-1)(x+1)^{2}}=\frac{A}{2 x-1}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} \\
x-4=A(x+1)^{2}+B(2 x-1)(x+1)+C(2 x-1)
\end{gathered}
$$

Let $x=-1$,

$$
\begin{aligned}
-1-4 & =C(2(-1)-1) \\
C & =1
\end{aligned}
$$

Let $x=\frac{1}{2}$,

$$
\begin{aligned}
\frac{1}{2}-4 & =A\left(\frac{1}{2}+1\right)^{2} \\
A & =-\frac{14}{9}
\end{aligned}
$$

Let $x=0$,

$$
\begin{gathered}
0-4=\left(-\frac{14}{9}\right)(0+1)^{2}+B(2(0)-1)((0)+1)+(2(0)-1) \\
B=\frac{31}{9} \\
\therefore \frac{\boldsymbol{x}-\mathbf{4}}{(\mathbf{2} \boldsymbol{x}-\mathbf{1})(\boldsymbol{x}+\mathbf{1})^{\mathbf{2}}}=-\frac{\mathbf{1 4}}{\mathbf{9 (2 x - 1)}}+\frac{\mathbf{3 1}}{\mathbf{9 (x}+\mathbf{1})}+\frac{\boldsymbol{C}}{(\boldsymbol{x}+\mathbf{1})^{\mathbf{2}}}
\end{gathered}
$$

4. (a)

$$
\begin{aligned}
& 9 x^{3}-6 x^{2}+x=x\left(9 x^{2}-6 x+1\right) \\
&=x(3 x-1)^{2} \\
& \therefore \frac{2 x^{2}-3 x+1}{x(3 x-1)^{2}}=\frac{A}{x}+\frac{B}{(x-1)}+\frac{C}{(x-1)^{2}} \\
& 2 x^{2}-3 x+1=A(3 x-1)^{2}+B x(3 x-1)+C x
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
2(0)^{2}-3(0)+1 & =A(3(0)-1)^{2} \\
A & =1
\end{aligned}
$$

Let $x=\frac{1}{3}$,

$$
\begin{aligned}
2\left(\frac{1}{3}\right)^{2}-3\left(\frac{1}{3}\right)+1 & =C\left(\frac{1}{3}\right) \\
C & =\frac{2}{3}
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
& 2(1)^{2}-3(1)+1=(3(1)-1)^{2}+B(1)(3(1)-1)+\frac{2}{3}(1) \\
& B=-\frac{7}{3} \\
& \therefore \frac{\mathbf{2} \boldsymbol{x}^{\mathbf{2}}-\mathbf{3} \boldsymbol{x}+\mathbf{1}}{\boldsymbol{x}(\mathbf{3} \boldsymbol{x}-\mathbf{1})^{\mathbf{2}}}=\frac{\mathbf{1}}{\boldsymbol{x}}-\frac{\mathbf{7}}{\mathbf{3 (3 \boldsymbol { x } - \mathbf { 1 })}}+\frac{\mathbf{2}}{\mathbf{3 (3 \boldsymbol { x } - \mathbf { 1 })}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{2 x^{2}-3 x+1}{x(3 x-1)^{2}} d x & =\int\left(\frac{1}{x}-\frac{7}{3(3 x-1)}+\frac{2}{3(3 x-1)}\right) d x \\
& =\ln x-\frac{7}{3}\left(\frac{1}{3} \ln (3 x-1)\right)+\frac{2}{3}\left(\frac{(3 x-1)^{-1}}{3(-1)}\right)+c \\
& =\ln \boldsymbol{x}-\frac{\mathbf{7}}{\mathbf{9}} \ln (\mathbf{3 x}-\mathbf{1})-\frac{\mathbf{2}}{\mathbf{9 (3 x - 1)}}+\boldsymbol{c}
\end{aligned}
$$

5 Binomial Theorem

5.1 Full Solutions

1. (a)

$$
\begin{aligned}
(1+p x)^{6} & =1+\binom{6}{1} p x+\binom{6}{2}(p x)^{2}+\ldots \\
& =\mathbf{1}+\mathbf{6} \boldsymbol{p} \boldsymbol{x}+\mathbf{1 5} \boldsymbol{p}^{2} \boldsymbol{x}^{2}+\ldots
\end{aligned}
$$

(b)

$$
\begin{aligned}
(1+p x)^{6}(1+q x) & =\left(1+6 p x+15 p^{2} x^{2}+\ldots\right)(1+q x) \\
& =1+(6 p+q) x+\left(6 p q+15 p^{2}\right) x^{2}+\ldots
\end{aligned}
$$

Since the first 2 non-zero terms are 1 and $-\frac{7}{3} x^{2}$, the coefficient of x is 0

$$
\begin{align*}
6 p+q & =0 \\
q & =-6 p \tag{1}
\end{align*}
$$

Coefficient of x^{2} is $-\frac{7}{3}$

$$
\begin{equation*}
6 p q+15 p^{2}=-\frac{7}{3} \tag{2}
\end{equation*}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
6 p(-6 p)+15 p^{2} & =-\frac{7}{3} \\
p^{2} & =\frac{1}{9} \\
p & = \pm \frac{1}{3}
\end{aligned}
$$

Substitute $p= \pm \frac{1}{3}$ into Equation (1),

$$
\begin{aligned}
q & =-6\left(\pm \frac{1}{3}\right) \\
& = \pm 2 \\
\therefore \boldsymbol{p}= & \pm \frac{\mathbf{1}}{\mathbf{3}} \quad \boldsymbol{q}= \pm \mathbf{2}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
T_{r+1} & =\binom{9}{r}\left(x^{2}\right)^{9-r}\left(-\frac{3}{x}\right)^{r} \\
& =\binom{9}{r}(-3)^{r} x^{18-3 r}
\end{aligned}
$$

For the x^{3} term

$$
\begin{aligned}
18-3 r & =3 \\
r & =5 \\
\therefore \text { Coefficient } p & =\binom{9}{5}(-3)^{5} \\
& =-30618
\end{aligned}
$$

For the x^{6} term

$$
\begin{aligned}
18-3 r & =6 \\
r & =4
\end{aligned}
$$

\therefore Coefficient $q=\binom{9}{4}(-3)^{4}$

$$
=10206
$$

$$
\therefore \frac{p}{q}=\frac{-30618}{10206}
$$

$$
=-3
$$

(b) (i)

$$
\begin{aligned}
\left(2+\frac{x}{2}\right)^{5} & =2^{5}+\binom{5}{1}(2)^{5-1}\left(\frac{x}{2}\right)+\binom{5}{2}(2)^{5-2}\left(\frac{x}{2}\right)^{2} \\
& =\mathbf{3 2}+\mathbf{4 0} \boldsymbol{x}+\mathbf{2 0} \boldsymbol{x}^{2}+\ldots
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(1-k x)^{2}\left(2+\frac{x}{2}\right)^{5} & =\left(1-2 k x+k^{2} x^{2}\right)\left(32+40 x+20 x^{2}+\ldots\right) \\
& =\ldots+(1)\left(20 x^{2}\right)+(-2 k x)(40 x)+\left(k^{2} x^{2}\right)(32)+\ldots \\
& =\ldots+\left(32 k^{2}-80 k+20\right) x^{2}
\end{aligned}
$$

Since the coefficient is -12 ,

$$
\begin{aligned}
& 32 k^{2}-80 k+20=-12 \\
& 2 k^{2}-5 k+2=0 \\
&(2 k-1)(k-2)=0 \\
& \therefore \boldsymbol{k}=\frac{\mathbf{1}}{\mathbf{2}} \quad \text { or } \quad \boldsymbol{k}=\mathbf{2}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\left(1-\frac{x}{2}\right)^{9} & =1^{9}+\binom{9}{1}\left(-\frac{x}{2}\right)^{1}+\binom{9}{2}\left(-\frac{x}{2}\right)^{2}+\binom{9}{3}\left(-\frac{x}{2}\right)^{3}+\binom{9}{4}\left(-\frac{x}{2}\right)^{4}+\ldots \\
& =\mathbf{1}-\frac{\mathbf{9}}{\mathbf{2}} \boldsymbol{x}+\mathbf{9} \boldsymbol{x}^{\mathbf{2}}-\mathbf{2 1} \mathbf{2} \boldsymbol{x}^{\mathbf{3}}+\frac{\mathbf{6 3}}{\mathbf{8}} \boldsymbol{x}^{\mathbf{4}}+\ldots
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(4-\frac{1}{x}+\frac{a}{x^{2}}\right)\left(1-\frac{x}{2}\right)^{9} \\
& =\left(4-\frac{1}{x}+\frac{a}{x^{2}}\right)\left(1-\frac{9}{2} x+9 x^{2}-\frac{21}{2} x^{3}+\frac{63}{8} x^{4}+\ldots\right) \\
& =\ldots+4\left(9 x^{2}\right)+\left(-\frac{21}{2} x^{3}\right)\left(-\frac{1}{x}\right)+\left(\frac{a}{x^{2}}\right)\left(\frac{63}{8} x^{4}\right)+\ldots \\
& =\ldots+\left(\frac{372+63 a}{8}\right) x^{2}+\ldots
\end{aligned}
$$

Comparing coefficients,

$$
\begin{aligned}
54 \frac{3}{8} & =\frac{372+63 a}{8} \\
372+63 a & =435 \\
a & =\mathbf{1}
\end{aligned}
$$

(c)

$$
\left(1-\frac{1}{2} x-x^{2}\right)^{9}=\left(1-\frac{x+2 x^{2}}{2}\right)^{9}
$$

Hence, comparing with part (a),

$$
x_{(a)}=x_{(b)}+2 x_{(b)}^{2}
$$

$$
\begin{aligned}
\left(1-\frac{1}{2} x-x^{2}\right)^{9} & =1-\frac{9}{2}\left(x+2 x^{2}\right)+9\left(x+2 x^{2}\right)^{2}-\frac{21}{2}\left(x+2 x^{2}\right)^{3}+\ldots \\
& =1-\frac{9}{2}\left(x+2 x^{2}\right)+9\left(x^{2}+4 x^{3}+\ldots\right)-\frac{21}{2}\left(x^{3}+\ldots\right)+\ldots \\
& =1-\frac{9}{2} x-9 x^{2}+9 x^{2}+36 x^{3}-\frac{21}{2} x^{3}+\ldots \\
& =\mathbf{1}-\frac{\mathbf{9}}{\mathbf{2}} \boldsymbol{x}+\frac{\mathbf{5 1}}{\mathbf{2}} \boldsymbol{x}^{\mathbf{3}}+\ldots
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
\left(1-\frac{x}{3}\right)^{n} & =1^{n}+\binom{n}{1}(1)^{n-1}\left(-\frac{x}{3}\right)^{1}+\binom{n}{2}(1)^{n-2}\left(-\frac{x}{3}\right)^{2}+\ldots \\
& =1-\frac{n}{3} x+\frac{n(n-1)}{18} x^{2}+\ldots
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \left(2+p x+\frac{5}{2} x^{2}\right)\left(1-\frac{x}{3}\right)^{n} \\
& =\left(2+p x+\frac{5}{2} x^{2}\right)\left(1-\frac{n}{3} x+\frac{n(n-1)}{18} x^{2}+\ldots\right) \\
& =2+(p x)(1)+(2)\left(-\frac{n}{3} x\right)+2\left(\frac{n(n-1)}{18} x^{2}\right)+(p x)\left(-\frac{n}{3} x\right)+\frac{5}{2} x^{2}+\ldots \\
& =2+\left(p-\frac{2 n}{3}\right) x+\left[\frac{n(n-1)}{9}-\frac{p n}{3}+\frac{5}{2}\right] x^{2}+\ldots
\end{aligned}
$$

(c) Given that

$$
\begin{aligned}
\left(2+p x+\frac{5}{2} x^{2}\right)\left(1-\frac{x}{3}\right)^{n} & =2+\frac{31 p}{3} x+\frac{25}{3} x^{2}+\ldots \\
2+\left(p-\frac{2 n}{3}\right) x+\left[\frac{n(n-1)}{9}-\frac{p n}{3}+\frac{5}{2}\right] x^{2}+\ldots & =2+\frac{31 p}{3} x+\frac{25}{3} x^{2}+\ldots
\end{aligned}
$$

Comparing coefficients,

$$
\begin{aligned}
p-\frac{2 n}{3} & =\frac{31 p}{3} \\
-\frac{28}{3} p & =\frac{2 n}{3} \\
\therefore-28 p & =2 n \\
p & =-\frac{1}{14} n \ldots \ldots .(1) \\
\frac{n(n-1)}{9}-\frac{p n}{3}+\frac{5}{2} & =\frac{25}{3} \\
\frac{n(n-1)}{9}-\frac{p n}{3}-\frac{35}{6} & =0 \\
2 n(n-1)-6 p n-105 & =0
\end{aligned}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
2 n^{2}-2 n-6\left(-\frac{1}{14} n\right) n-105 & =0 \\
\frac{17}{7} n^{2}-2 n-105 & =0 \\
17 n^{2}-14 n-735 & =0 \\
(17 n+105)(n-7) & =0 \\
\therefore n=-\frac{105}{17}(\mathrm{rej}) \quad n=7 &
\end{aligned}
$$

Substitute $n=7$ into Equation (1),

$$
\begin{aligned}
p & =-\frac{1}{14}(7) \\
p & =-\frac{1}{2}
\end{aligned}
$$

(d) With the new values of n and p,

$$
\begin{aligned}
& \left(2-\frac{1}{2} x+\frac{5}{2} x^{2}\right)\left(1-\frac{x}{3}\right)^{7} \\
& =\left(2-\frac{1}{2} x+\frac{5}{2} x^{2}\right)\left(\ldots-\frac{7}{3} x+\frac{42}{18} x^{2}-\binom{7}{3}(1)^{7-3}\left(-\frac{x}{3}\right)^{3}+\ldots\right) \\
& =\left(2-\frac{1}{2} x+\frac{5}{2} x^{2}\right)\left(\ldots-\frac{7}{3} x+\frac{7}{3} x^{2}-\frac{35}{27} x^{3}+\ldots\right) \\
& =\ldots+\left[2\left(-\frac{35}{27}\right)+\left(-\frac{1}{2}\right)\left(\frac{7}{3}\right)+\left(\frac{5}{2}\right)\left(-\frac{7}{3}\right)\right] x^{3}+\ldots \\
& =\ldots-\frac{259}{27} x^{3}+\ldots \\
& \text { Hence, the coefficient is }-\frac{\mathbf{2 5 9}}{\mathbf{2 7}}
\end{aligned}
$$

Note that for part (d), we only need to find the coefficients from x to x^{3} as these are the only terms that will be multiplied to $\left(2+p x+\frac{5}{2} x^{2}\right)$ to get an x^{3} term

6 Exponential \& Logarithms

6.1 Full Solutions

1. (a) When $t=0$

$$
\begin{aligned}
V & =45000 e^{-k(0)} \\
& =\$ 45000
\end{aligned}
$$

(b) When $t=11, V=\$ 36300$

$$
\begin{aligned}
& 36300=45000 e^{-k(11)} \\
& e^{-11 k}=\frac{121}{150} \\
&-11 k=\ln \left(\frac{121}{150}\right) \\
& k=-\frac{1}{11} \ln \left(\frac{121}{150}\right) \\
& \therefore V=45000 e^{\frac{1}{11} \ln \left(\frac{121}{150}\right) t}
\end{aligned}
$$

When $t=9$,

$$
\begin{aligned}
V & =45000 e^{\frac{1}{11} \ln \left(\frac{121}{150}\right)(9)} \\
& =37746.03446 \ldots \\
& =\$ 37700 \text { (nearest } \$ \mathbf{1 0 0})
\end{aligned}
$$

(c) Since the apartment when it reached $\frac{2}{3}$ of its original value

$$
\begin{aligned}
\frac{2}{3} & =e^{\frac{1}{11} \ln \left(\frac{121}{150}\right) t} \\
\ln \left(\frac{2}{3}\right) & =\frac{1}{11} \ln \left(\frac{121}{150}\right) t \\
\therefore t & =\frac{\ln \left(\frac{2}{3}\right)}{\frac{1}{11} \ln \left(\frac{121}{150}\right)} \\
& =20.759717 \ldots \\
& \approx 21 \text { (nearest month) }
\end{aligned}
$$

2. (a) Graph for part (a) \& (b)

(b)

$$
\begin{aligned}
e x & =e^{4-3 x}-3 e \\
x & =\frac{e^{4-3 x}}{e}-3 \\
e^{3-3 x} & =x+3 \\
\therefore 3-3 x & =\ln (x+3)
\end{aligned}
$$

Sketch the graph of: $\boldsymbol{y}=\mathbf{3 - 3 x}$
3. (a)

$$
\begin{aligned}
5^{x+2}-25^{x+\frac{1}{2}} & =2\left(5^{x+1}\right) \\
\left(5^{x}\right)\left(5^{2}\right)-\left(5^{2 x}\right)(5) & =2\left(5^{x}\right)(5)
\end{aligned}
$$

Let $u=5^{x}$

$$
\begin{gathered}
25 u-5 u^{2}=10 u \\
5 u(3-u)=0 \\
u=0 \quad \text { or } \quad u=3 \\
5^{x}=0(\mathrm{rej}) \quad \text { or } \quad 5^{x}=3
\end{gathered}
$$

For $5^{x}=3$,

$$
\begin{aligned}
5^{x} & =3 \\
x & =\frac{\lg 3}{\lg 5} \\
& =0.682606 \ldots \\
& =\mathbf{0 . 6 8} \text { (2.d.p.) }
\end{aligned}
$$

(b)

$$
\begin{array}{r}
64^{x} \div 8^{y}=32 \ldots \ldots \\
27^{2 x}\left(\frac{1}{\sqrt{3}}\right)^{y+1}=9 \sqrt{3} \tag{2}
\end{array}
$$

From Equation (1),

$$
\begin{align*}
2^{6 x} \div 2^{3 y} & =2^{5} \\
2^{6 x-3 y} & =2^{5} \\
\therefore 6 x-3 y & =5 . \tag{3}
\end{align*}
$$

From Equation (2),

$$
\begin{align*}
3^{6 x}\left(3^{-\frac{1}{2}(y+1)}\right) & =3^{2 \frac{1}{2}} \\
\therefore 6 x-\frac{1}{2}(y+1) & =2 \frac{1}{2} \\
y & =12 x-6 \tag{4}
\end{align*}
$$

Substitute Equation (4) into Equation (3),

$$
\begin{aligned}
6 x-3(12 x-6) & =5 \\
-30 x & =-13 \\
x & =\frac{13}{30}
\end{aligned}
$$

Substitute $x=\frac{13}{30}$ into Equation (4),

$$
\begin{aligned}
y & =12\left(\frac{13}{30}\right)-6 \\
& =-\frac{4}{5} \\
\therefore \boldsymbol{x} & =\frac{\mathbf{1 3}}{\mathbf{3 0}} \quad \boldsymbol{y}=-\frac{\mathbf{4}}{\mathbf{5}}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
& \log _{x} \frac{p}{\sqrt{q}}-3 \log _{x} \sqrt{q}=\log _{x}(p-q) \\
& \log _{x} \frac{p}{q^{\frac{1}{2}}}-\log _{x} q^{\frac{3}{2}}=\log _{x}(p-q) \\
& \log _{x}\left(\frac{p}{\left(q^{\frac{1}{2}}\right)\left(q^{\frac{3}{2}}\right)}\right)=\log _{x}(p-q) \\
& \frac{p}{q^{2}}=p-q \\
& p=p q^{2}-q^{3} \\
& p\left(q^{2}-1\right)=q^{3} \\
& \therefore \boldsymbol{p}=\frac{\boldsymbol{q}^{3}}{\boldsymbol{q}^{2}-1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\log _{2} 21+\log _{4} \frac{16}{7} & =\log _{2}(3 \times 7)+\frac{\log _{2}\left(\frac{16}{7}\right)}{\log _{2} 4} \\
& =\log _{2} 3+\log _{2} 7+\frac{1}{2}\left[\log _{2} 16-\log _{2} 7\right] \\
& =\log _{2} 3+\log _{2} 6+2-\frac{1}{2} \log _{2} 7 \\
& =\log _{2} 3+2+\frac{1}{2} \log _{2} 7 \\
& =\boldsymbol{a}+\mathbf{2}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{b}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{(\sqrt[10]{x}+1)\left(x^{\frac{21}{10}}-x^{2}\right)}{\sqrt[5]{x}-1} & =\frac{(\sqrt[10]{x}+1)\left(x^{2}\right)\left(x^{\frac{1}{10}}-1\right)}{\sqrt[5]{x}-1} \\
& =\frac{\left[(\sqrt[10]{x})^{2}-1\right]\left(x^{2}\right)}{\sqrt[5]{x}-1} \\
& =\frac{(\sqrt[5]{x}-1)\left(x^{2}\right)}{\sqrt[5]{x}-1} \\
& =x^{2}
\end{aligned}
$$

7 Trigonometry

7.1 Full Solutions

1. (a)

$$
\begin{aligned}
\tan \left(\theta-45^{\circ}\right) & =\frac{\tan \theta-\tan 45^{\circ}}{1+\tan \theta \tan 45^{\circ}} \\
& =\frac{\tan \theta-1}{1+\tan \theta}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\cot 15^{\circ} & =\cot \left(60^{\circ}-45^{\circ}\right) \\
& =\frac{1}{\tan \left(60^{\circ}-45^{\circ}\right)} \\
& =\frac{1+\tan 60^{\circ}}{\tan 60^{\circ}-1} \\
& =\left(\frac{1+\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}+1}{\sqrt{3}+1}\right) \\
& =\frac{4+2 \sqrt{3}}{2} \\
& =\mathbf{2}+\sqrt{\mathbf{3}}
\end{aligned}
$$

2. (a) (i)

$$
\begin{aligned}
\text { LHS } & =1+4 \sin ^{2} x \\
& =1+2(1-\cos 2 x) \\
& =3-2 \cos 2 x \\
& =\text { RHS (shown) }
\end{aligned}
$$

(ii)

$$
\text { Amplitude }=\mathbf{2} \quad \text { Period }=\boldsymbol{\pi}
$$

(b) Graph for part (b) \& (c)

(c)

$$
\begin{aligned}
\pi \cos 2 x & =x \\
\cos 2 x & =\frac{x}{\pi} \\
2 \cos 2 x & =\frac{2 x}{\pi} \\
3-2 \cos 2 x & =3-\frac{2 x}{\pi}
\end{aligned}
$$

Sketch the line: $\boldsymbol{y}=\mathbf{3}-\frac{\mathbf{2 x}}{\boldsymbol{\pi}}$
Number of solutions $=\mathbf{5}$
3. (a) (i)

$$
\begin{aligned}
\angle B A C & =2 \pi-\frac{2 \pi}{3}-\left(\frac{\pi}{2}-\theta\right)-\frac{\pi}{2} \\
& =\theta+\frac{\pi}{3} \text { (shown) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \sin \left(\theta+\frac{\pi}{3}\right)=\frac{B C}{2} \\
& \quad B C=2 \sin \left(\theta+\frac{\pi}{3}\right) \\
& h=C D+B C \\
& =\sin \theta+2 \sin \left(\theta+\frac{\pi}{3}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
h & =\sin \theta+2 \sin \left(\theta+\frac{\pi}{3}\right) \\
& =\sin \theta+2 \sin \theta \cos \frac{\pi}{3}+2 \cos \theta \sin \frac{\pi}{3} \\
& =2 \sin \theta+\sqrt{3} \cos \theta \text { (shown) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& R=\sqrt{2^{2}+(\sqrt{3})^{2}} \\
&=\sqrt{7} \\
& \theta=\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
&=0.713724 \ldots \\
&=0.714(3 . \text {.s.f. }) \\
& \therefore 2 \sin \theta+\sqrt{3} \cos \theta=\sqrt{7} \sin (\theta+0.714)
\end{aligned}
$$

(d)

$$
\text { Maximum value of } h=\sqrt{7}
$$

(e) Given that $h=2.5$,

$$
\begin{gathered}
2.5=\sqrt{7} \sin (\theta+0.714) \\
\sin (\theta+0.714)=\frac{5}{2 \sqrt{7}} \\
\alpha=\sin ^{-1}\left(\frac{5}{2 \sqrt{7}}\right) \quad(\text { Quadrant } 1 \& 2)
\end{gathered}
$$

For Quadrant 1,

$$
\begin{aligned}
\alpha & =\sin ^{-1}\left(\frac{5}{2 \sqrt{7}}\right)-\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =0.523598 \ldots \\
& =\mathbf{0 . 5 2 4} \text { (3.s.f.) }
\end{aligned}
$$

For Quadrant 2,

$$
\begin{aligned}
\alpha & =\pi-\sin ^{-1}\left(\frac{5}{2 \sqrt{7}}\right)-\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =1.190545 \ldots \\
& =\mathbf{1} .19 \text { (3.s.f.) }
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
\text { RHS } & =\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1 \\
& =\left(\tan ^{2} x+1\right)\left(\tan ^{2} x\right)-\left(\sec ^{2} x-1\right) \\
& =\tan ^{4} x+\tan ^{2} x-\tan ^{2} x \\
& =\tan ^{4} x \\
& =\text { RHS (shown) }
\end{aligned}
$$

(b)

$$
\begin{array}{r}
\cos ^{2} x+3 \sin x \cos x+1=0 \\
\cos ^{2} x+3 \sin x \cos x+\sin ^{2} x+\cos ^{2} x=0 \\
2 \cos ^{2} x+3 \sin x \cos x+\sin ^{2} x=0 \\
(2 \cos x+\sin x)(\cos x+\sin x)=0 \\
\therefore \tan x=-2 \quad \tan x=-1
\end{array}
$$

For $\tan x=-2$,

$$
\begin{aligned}
\alpha & =\tan ^{-1}(2)(\text { Quadrant } 2 \& 4) \\
x & =180^{\circ}-\tan ^{-1}(2) \\
& =116.565051 \ldots \\
& =\mathbf{1 1 6 . 6} \mathbf{6}^{\circ} \text { (1.d.p.) } \\
x & =360^{\circ}-\tan ^{-1}(2) \\
& =296.565051 \ldots \\
& =\mathbf{2 9 6 . 6} \mathbf{6}^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

For $\tan x=-1$,

$$
\begin{aligned}
\alpha & =\tan ^{-1}(1)(\text { Quadrant } 2 \& 4) \\
x & =180^{\circ}-\tan ^{-1}(1) \\
& =135^{\circ} \\
x & =360^{\circ}-\tan ^{-1}(1) \\
& =\mathbf{3 1 5}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\sin \theta & =\frac{\sqrt{(2 \sqrt{2})^{2}-(\sqrt{3}+1)^{2}}}{2 \sqrt{2}} \\
& =\frac{\sqrt{8-[3+1+2 \sqrt{3}]}}{2 \sqrt{2}} \\
& =\frac{\sqrt{8-4-2 \sqrt{3}}}{2 \sqrt{2}} \\
& =\frac{\sqrt{2(2-\sqrt{3})}}{2 \sqrt{2}} \\
& =\frac{\sqrt{2}(\sqrt{2-\sqrt{3}})}{2 \sqrt{2}} \\
& =\frac{\sqrt{\mathbf{2}-\sqrt{3}}}{\mathbf{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\tan \theta & =\frac{\sqrt{4-2 \sqrt{3}}}{\sqrt{3}+1} \\
\tan ^{2} \theta & =\left(\frac{\sqrt{4-2 \sqrt{3}}}{\sqrt{3}+1}\right)^{2} \\
& =\frac{4-2 \sqrt{3}}{4+2 \sqrt{3}} \\
& =\frac{2-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\
& =\frac{4+4 \sqrt{3}+3}{4-3} \\
& =7-4 \sqrt{3} \\
\therefore \tan \theta & =\sqrt{7-4 \sqrt{3}} \quad \text { (shown) }
\end{aligned}
$$

8 Coordinate Geometry

8.1 Full Solutions

1. (a) (i)

$$
\text { Gradient of } \begin{aligned}
B E & =\frac{11-8}{8-6} \\
& =\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Gradient of } A C & =\frac{-1}{\left(\frac{3}{2}\right)} \\
& =-\frac{2}{3}
\end{aligned}
$$

$$
\therefore y-8=-\frac{2}{3}(x-6)
$$

$$
y=-\frac{2}{3} x+12
$$

(ii)

$$
A(0,12)
$$

(iii) Let the coordinates of F be $F(h, k)$

By similar triangles,

$$
\begin{aligned}
& \frac{8-h}{8-6}=\frac{3}{1} \\
& h=2 \\
& \frac{11-k}{11-8}=\frac{3}{1} \\
& k=2 \\
& \therefore \boldsymbol{F}(\mathbf{2}, \mathbf{2})
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Length of } A B & =\sqrt{8^{2}+1^{2}} \\
& =\sqrt{65} \\
\text { Length of } A P & =\sqrt{4^{2}+7^{2}} \\
& =\sqrt{65}
\end{aligned}
$$

Since $A B=A P, \triangle A B P$ is an isosceles triangle (shown)
Quadrilateral $A B C P$ is a kite
(c)

$$
\frac{\text { Area of } \triangle A B C}{\text { Area of trapezium } A B C D}=\frac{\mathbf{1}}{\mathbf{5}}
$$

2. (a) For coordinate R, by inspection,

$$
\begin{gathered}
\therefore \boldsymbol{R}(8, \mathbf{2}) \\
\text { Gradient of } P R=\frac{2-4}{8-2} \\
=
\end{gathered} \begin{aligned}
&=\frac{1}{3} \\
& \begin{aligned}
\therefore \text { Gradient of } M S & =\frac{-1}{\left(-\frac{1}{3}\right)} \\
& =3
\end{aligned} \\
& \therefore y-3=3(x-5) \\
& Q S: y=3 x-12 \ldots . .(1)
\end{aligned}
$$

At $S, y=0$,

$$
\begin{gather*}
0=3 x-12 \\
x=4 \\
\therefore \boldsymbol{S}(\mathbf{4}, \mathbf{0}) \\
P Q: y=x+2 \ldots \tag{2}
\end{gather*}
$$

Let Equation (1) = Equation (2),

$$
\begin{aligned}
3 x-12 & =x+2 \\
x & =7
\end{aligned}
$$

Substitute $x=7$ into Equation (2),

$$
\begin{aligned}
y & =7+2 \\
& =9 \\
\therefore & Q(7,9)
\end{aligned}
$$

(b)

$$
\text { Area of } \begin{aligned}
P Q R S & =\frac{1}{2}\left|\begin{array}{lllll}
4 & 2 & 7 & 8 & 4 \\
0 & 4 & 9 & 2 & 0
\end{array}\right| \\
& \left.=\frac{1}{2} \right\rvert\,(48-(108) \mid \\
& =\frac{1}{2}|-60| \\
& =\mathbf{3 0} \text { units }^{2}
\end{aligned}
$$

3.

$$
\begin{aligned}
& \qquad \begin{aligned}
M & =\left(\frac{-5+3}{2}, \frac{6+10}{2}\right) \\
& =(-1,8)
\end{aligned} \\
& \text { Gradient of } A B=\frac{10-6}{3-(-5)} \\
& \\
& =\frac{1}{2}
\end{aligned}
$$

\therefore Gradient of perpendicular bisector $M P=\frac{-1}{\left(\frac{1}{2}\right)}$

$$
=-2
$$

For $B P$,

$$
\begin{gathered}
6 y+7 x=0 \\
y=-\frac{7}{6} x \\
\therefore y-6=-\frac{7}{6}(x+5) \\
B P: y=-\frac{7}{6} x+\frac{1}{6} \ldots . .(1)
\end{gathered}
$$

For $M P$,

$$
\begin{gather*}
\therefore y-8=-2(x+1) \\
M P: y=-2 x+6 \ldots \ldots \tag{2}
\end{gather*}
$$

At point P, let Equation (1) $=$ Equation (2),

$$
\begin{aligned}
-\frac{7}{6} x+\frac{1}{6} & =-2 x+6 \\
\frac{5}{6} x & =\frac{35}{6} \\
x & =7
\end{aligned}
$$

Substitute $x=7$ into Equation (2),

$$
\begin{aligned}
& y=-2(7)+6 \\
&=-8 \\
& \therefore P(7,-8)
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
2 y & =-4 x+1 \\
y & =-2 x+\frac{1}{2}
\end{aligned}
$$

\therefore Gradient of $B C=-2$

$$
\begin{gathered}
y-7=-2(x-2) \\
B C: \boldsymbol{y}=-\mathbf{2 x}+\mathbf{1 1}
\end{gathered}
$$

(b) At $F, y=0$

$$
\begin{gathered}
0=-2 x+11 \\
x=-5 \frac{1}{2} \\
F\left(-5 \frac{1}{2}, 0\right) \\
\text { Gradient of } A B=\frac{7-(-2)}{2-(-4)} \\
=\frac{3}{2} \\
\begin{aligned}
\therefore y-7=\frac{3}{2}(x-2)
\end{aligned} \\
A B: y=\frac{3}{2} x+4 \\
\therefore E(0,4) \\
\text { Gradient of } E F=\frac{0-4}{-5 \frac{1}{2}-0} \\
=
\end{gathered}
$$

$\therefore E F$ is not perpendicular to $A B$

(c) Let the coordinates of C be (x, y)

$$
\begin{equation*}
B C: y=-2 x+11 \tag{1}
\end{equation*}
$$

Since $A C=A E$,

$$
\begin{align*}
\sqrt{(-4-x)^{2}+(-2-y)^{2}} & =\sqrt{(0-x)^{2}+(4-y)^{2}} \\
16+8 x+x^{2}+4+4 y+y^{2} & =x^{2}+16-8 y+y^{2} \\
8 x+12 y & =-4 \\
2 x+3 y & =-1 \ldots \ldots(2) \tag{2}
\end{align*}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
2 x+3(-2 x+11) & =-1 \\
2 x-6 x+33 & =-1 \\
-4 x & =-34 \\
x & =8 \frac{1}{2}
\end{aligned}
$$

Substitute $x=8 \frac{1}{2}$ into Equation (1),

$$
\begin{aligned}
y & =-2\left(8 \frac{1}{2}\right)+11 \\
& =-6 \\
& \therefore C\left(\mathbf{8} \frac{\mathbf{1}}{\mathbf{2}},-\mathbf{6}\right)
\end{aligned}
$$

(d)

$$
\text { Area of } \begin{aligned}
\triangle A E C & =\frac{1}{2}\left|\begin{array}{cccc}
-4 & 0 & 8 \frac{1}{2} & -4 \\
-2 & 4 & -6 & -2
\end{array}\right| \\
& =\frac{1}{2}|(-33)-(58)| \\
& =\frac{1}{2}|-91| \\
& =\mathbf{4 5} \frac{\mathbf{1}}{\mathbf{2}} \text { units }^{2}
\end{aligned}
$$

9 Further Coordinate Geometry

9.1 Full Solutions

1. (a)

$$
\begin{aligned}
x^{2}+y^{2}-14 y & =0 \\
x^{2}+y^{2}-14 y+49 & =49 \\
(x-0)^{2}+(y-7)^{2} & =7^{2}
\end{aligned}
$$

\therefore Centre $=A(0,7) \quad$ Radius $=7$ units
(b) Add the additional lines as shown below

By Pythagoras' Theorem,

$$
\begin{gathered}
(7-r)^{2}+(2 \sqrt{35})^{2}=(7+r)^{2} \\
49-14 r+r^{2}+140=49+14 r+r^{2} \\
r=5 \\
\therefore B(2 \sqrt{35}, 9) \\
(x-2 \sqrt{35})^{2}+(y-9)^{2}=5^{2} \\
(\boldsymbol{x}-\mathbf{2} \sqrt{\mathbf{3 5}})^{2}+(\boldsymbol{y}-\mathbf{9})^{2}=\mathbf{2 5}
\end{gathered}
$$

(c)

$$
\begin{aligned}
& \begin{aligned}
\text { Midpoint of } A B & =\left(\frac{0+2 \sqrt{35}}{2}, \frac{7+9}{2}\right) \\
& =(\sqrt{35}, 8)
\end{aligned} \\
& \begin{aligned}
& \text { Gradient of } A B=\frac{9-7}{2 \sqrt{35}-0} \\
&=\frac{1}{\sqrt{35}} \\
& \text { Gradient of perpendicular bisector }=\frac{-1}{\left(\frac{1}{\sqrt{35}}\right)} \\
&=-\sqrt{35} \\
& y-8=-\sqrt{35}(x-\sqrt{35}) \\
& \therefore y=-\sqrt{35} x+43
\end{aligned}
\end{aligned}
$$

2. (a)

$$
\begin{gathered}
\text { Radius }=\mathbf{3} \text { units } \\
(x-2)^{2}+(y+1)^{2}=3^{2} \\
\boldsymbol{x}^{2}+\boldsymbol{y}^{2}-\mathbf{4} \boldsymbol{x}+\mathbf{2} \boldsymbol{y}-\mathbf{4}=\mathbf{0}
\end{gathered}
$$

(b)

$$
\text { Gradient of perpendicular bisector }=-\frac{1}{5}
$$

Since the perpendicular bisector cuts the centre of the circle,

$$
\begin{gathered}
y-(-1)=-\frac{1}{5}(x-2) \\
\boldsymbol{y}=-\frac{1}{5} \boldsymbol{x}-\frac{\mathbf{3}}{\mathbf{5}}
\end{gathered}
$$

(c)

$$
C(-8,-1)
$$

3. (a) Since $A F: F B=1: 2$, by proportion

$$
\begin{aligned}
& y \text {-coordinate of } A=\frac{\left(1 \frac{1}{2}\right)}{2} \times 3 \\
&=2 \frac{1}{4} \\
& \therefore A\left(0,2 \frac{1}{4}\right)
\end{aligned}
$$

(b)

$$
\text { Radius of } \begin{aligned}
C_{2} & =\sqrt{\left(-\frac{1}{2}-\left(-1 \frac{1}{2}\right)\right)^{2}+\left(1 \frac{1}{2}-0\right)^{2}} \\
& =\sqrt{(1)^{2}+\left(1 \frac{1}{2}\right)^{2}} \\
& =\sqrt{\frac{13}{4}} \\
& =\frac{\sqrt{13}}{2} \text { units }
\end{aligned}
$$

Equation of $C_{2}:\left(x-\left(-1 \frac{1}{2}\right)\right)^{2}+(y-0)^{2}=\left(\frac{\sqrt{13}}{2}\right)^{2}$

$$
\therefore\left(x+1 \frac{1}{2}\right)^{2}+y^{2}=\frac{13}{4}
$$

(c) A point that the perpendicular bisector will cut is the midpoint of $P F$

$$
\begin{aligned}
\text { Midpoint of } P F & =\left(\frac{-\frac{1}{2}+0}{2}, \frac{1 \frac{1}{2}+(-1)}{2}\right) \\
& =\left(-\frac{1}{4}, \frac{1}{4}\right)
\end{aligned}
$$

To find the gradient of the perpendicular bisector, we first need to find the gradient of $P F$ first.

$$
\text { Gradient of } \begin{aligned}
P F & =\frac{-1 \frac{1}{2}-(-1)}{-\frac{1}{2}-0} \\
& =-5
\end{aligned}
$$

\therefore Gradient of perpendicular bisector $=\frac{1}{5}$

$$
\text { Equation: } \begin{aligned}
y-\frac{1}{4} & =\frac{1}{5}\left[x-\left(-\frac{1}{4}\right)\right] \\
y & =\frac{1}{\mathbf{5}} x+\frac{\mathbf{3}}{\mathbf{1 0}}
\end{aligned}
$$

(d) The y-coordinate of the centre corresponds to the midpoint of P and Q

$$
\begin{aligned}
y-\text { coordinate of } C_{3} & =\frac{2+(-1)}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

The centre also lies on the perpendicular bisector of $P F$. Substitute $y=\frac{1}{2}$ into the equation of the perpendicular bisector of $P F$,

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{5} x+\frac{3}{10} \\
& x=1 \\
& \therefore C\left(1, \frac{1}{2}\right) \\
& \text { Radius of } C_{3}=\sqrt{(0-1)^{2}+\left(-1-\frac{1}{2}\right)^{2}} \\
&=\sqrt{\frac{13}{4}} \\
&=\frac{\sqrt{13}}{2} \text { units }
\end{aligned}
$$

$$
\begin{gathered}
\text { Equation of } C_{3}:(x-1)^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{\sqrt{13}}{2}\right)^{2} \\
\therefore(x-1)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{13}{4}
\end{gathered}
$$

4. (a)

$$
\begin{aligned}
\text { Gradient of line } & =\frac{2-0}{-2-(-4)} \\
& =1
\end{aligned}
$$

$$
\begin{gather*}
\therefore y=x+4 \tag{1}\\
x^{2}+y^{2}+3 x-y=0 \tag{2}
\end{gather*}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
x^{2}+(x+4)^{2}+3 x-(x+4) & =0 \\
x^{2}+x^{2}+8 x+16+3 x-x-4 & =0 \\
2 x^{2}+10 x+12 & =0 \\
x^{2}+5 x+6 & =0 \\
(x+2)(x+3) & =0 \\
x=-2 \text { (N.A.) } \quad x=-3 &
\end{aligned}
$$

Substitute $x=-3$ into Equation (1),

$$
\begin{aligned}
y & =-3+4 \\
& =1
\end{aligned}
$$

$$
\therefore Q(-3,1)
$$

(b)

$$
\text { Midpoint of } \begin{aligned}
P Q & =\left(\frac{-2-3}{2}, \frac{2+1}{2}\right) \\
& =\left(-2 \frac{1}{2}, 1 \frac{1}{2}\right)
\end{aligned}
$$

Gradient of perpendicular bisector $=-1$

$$
\begin{aligned}
\therefore y-1 \frac{1}{2} & =-\left(x-\left(-2 \frac{1}{2}\right)\right) \\
\boldsymbol{y} & =-\boldsymbol{x}-\mathbf{1}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& x^{2}+y^{2}+3 x-y=0 \\
& x^{2}+y^{2}+2\left(\frac{3}{2}\right) x+2\left(-\frac{1}{2}\right) y=0 \\
& \therefore \text { Radius }=\sqrt{\left(-\frac{3}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}} \\
&=\sqrt{\frac{5}{2}}
\end{aligned}
$$

Let the new centre be (a, b)

$$
\begin{align*}
& C_{2}:(x-a)^{2}+(y-b)^{2}=\left(\sqrt{\frac{5}{2}}\right)^{2} \\
& C_{2}:(x-a)^{2}+(y-b)^{2}=\frac{5}{2} \ldots \ldots(1) \tag{1}
\end{align*}
$$

The perpendicular bisector of $P Q$ will intersect the centre of C_{2}

$$
\begin{equation*}
b=-a-1 \tag{2}
\end{equation*}
$$

Substitute Equation (2) into Equation (1),

$$
(x-a)^{2}+(y-(-a-1))^{2}=\frac{5}{2}
$$

Since the circle passes through $P(-2,2)$,

$$
\begin{aligned}
&(-2-a)^{2}+(3+a)^{2}=\frac{5}{2} \\
& 4+4 a+a^{2}+9+6 a+a^{2}-\frac{5}{2}=0 \\
& 2 a^{2}+10 a+10 \frac{1}{2}=0 \\
& 4 a^{2}+20 a+21=0 \\
&(2 a+3)(2 a+7)=0 \\
& a=-\frac{3}{2}(\text { N.A. }) \quad a=-3 \frac{1}{2}
\end{aligned}
$$

Substitute $a=-\frac{7}{2}$ into Equation (2)

$$
\begin{gathered}
b=-\left(-\frac{7}{2}\right)-1 \\
=2 \frac{1}{2} \\
\therefore\left(x+3 \frac{1}{2}\right)^{2}+\left(y-2 \frac{1}{2}\right)=2 \frac{1}{2}
\end{gathered}
$$

10 Linear Law

10.1 Full Solutions

1. (a)

$$
\begin{aligned}
y^{2} & =e^{-a x+4} \\
2 \ln y & =-a x+4 \\
\ln y & =-\frac{a}{2}(x)+2
\end{aligned}
$$

Using $(4,-4)$

$$
\begin{aligned}
-4 & =-\frac{a}{2}(4)+2 \\
a & =3
\end{aligned}
$$

At $(2, b)$

$$
\begin{aligned}
b & =-\frac{3}{2}(2)+2 \\
& =-1 \\
\therefore \boldsymbol{a} & =\mathbf{3} \quad \boldsymbol{b}=-\mathbf{1}
\end{aligned}
$$

(b) When $x=2$,

$$
\begin{aligned}
y^{2} & =e^{-3(2)+4} \\
y & = \pm \sqrt{e^{-2}} \text { (rej -ve) } \\
& =0.367879 \ldots \\
& =\mathbf{0 . 3 6 8} \text { (3.s.f.) }
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
y & =a x^{b+1} \\
\lg y & =\lg \left[a x^{b+1}\right] \\
\lg y & =\lg a+\lg x^{b+1} \\
\lg y & =(b+1) \lg x+\lg a \\
Y & =m X+c
\end{aligned}
$$

Plot a graph of $\lg y$ against $\lg x$ with $(b+1)$ as the gradient and $\lg a$ as the Y-intercept

$\lg x$	0.30	0.48	0.60	0.70	0.78	0.88
$\lg y$	0.75	1.02	1.20	1.35	1.47	1.61

Graph is drawn on the next page
(b)

$$
\begin{aligned}
\text { Gradient } & =\frac{1.5-0.9}{0.8-0.4} \\
(b+1) & =1.5 \\
\therefore \boldsymbol{b} & =\mathbf{0 . 5} \\
Y \text {-intercept } & =0.3 \\
\lg a & =0.3 \\
\therefore a & =10^{0.3} \\
& =1.995262 \ldots \\
& =\mathbf{2 . 0 0}(\mathbf{3 . s . f .})
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =x^{2} \\
\lg y & =2 \lg x \\
Y & =m X+c
\end{aligned}
$$

Plot the line of $\lg y=2 \lg x$

$$
\begin{aligned}
x^{1-b} & =a \\
\lg x^{1-b} & =\lg a \\
(1-b) \lg x & =\lg a \\
\lg x-b \lg x & =\lg a \\
\lg x+\lg x & =\lg a+b \lg x+\lg x \\
2 \lg x & =(b+1) \lg x+\lg a
\end{aligned}
$$

Hence, we are looking for the points of intersection of the 2 lines

$$
\begin{aligned}
\therefore \lg x & =0.6 \\
x & =10^{0.6} \\
& =3.981071 \ldots \\
& =\mathbf{3 . 9 8} \text { (3.s.f.) }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
y & =p(x+5)^{\frac{3}{2}}-q \sqrt{x+5} \\
\frac{y}{\sqrt{x+5}} & =p(x+5)-q \\
\frac{y}{\sqrt{x+5}} & =p x+(5 p-q) \\
Y & =m X+c
\end{aligned}
$$

Plot a graph of $\frac{y}{\sqrt{x+5}}$ against x with p as the gradient and $(5 p-q)$ as the Y-intercept

x	0.5	1	1.5	2	2.5
$\frac{y}{\sqrt{x+5}}$	10.49	11.51	12.51	13.49	14.50

Graph is drawn on the next page
(b)

$$
\begin{aligned}
\text { Gradient } & =\frac{14-13}{2.26-1.75} \\
\therefore \boldsymbol{p} & =\mathbf{1 . 9 6}
\end{aligned}
$$

$$
\begin{aligned}
Y \text {-intercept } & =9.57 \\
5 p-q & =9.57 \\
\therefore q & =5(1.96)-9.57 \\
& =\mathbf{0 . 2 3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
p(x+5)^{\frac{3}{2}} & =\sqrt{x+5}(x+10+q) \\
p(x+5) & =x+10+q \\
p(x+5)-q & =x+10
\end{aligned}
$$

Plot the line of $\frac{y}{\sqrt{x+5}}=x+10$. Hence, we are looking for the point of intersection of the 2 lines

$$
\therefore x=0.45
$$

4. (a)

$$
\begin{aligned}
y & =\frac{p-x}{x+q} \\
y(x+q) & =p-x \\
x(1+y) & =-q y+p \\
\therefore q & =1 \frac{1}{3}
\end{aligned}
$$

Substitute (3, 2),

$$
\begin{aligned}
2 & =-1 \frac{1}{3}(3)+p \\
p & =6 \\
\therefore \boldsymbol{p} & =\mathbf{6} \quad \boldsymbol{q}=\mathbf{1} \frac{\mathbf{1}}{\mathbf{3}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
(y, x(1+y))=(6, k) \\
x(1+6)=k \\
\therefore \boldsymbol{x}=\frac{\boldsymbol{k}}{\boldsymbol{7}}
\end{gathered}
$$

11 Proofs of Plane Geometry

11.1 Full Solutions

1. (a)

$$
\begin{gathered}
\angle F A D=\angle B C D \text { (angles in the same segment) (A) } \\
F D=B D \text { (given) (S) } \\
\angle A D F=\angle C D B \text { (vertically opposite angles) (A) }
\end{gathered}
$$

By ASA congruency test, $\triangle A D F$ is congruent to $\triangle C D B$

(b)

$$
\angle G E A=\angle C E B \text { (common angle) (A) }
$$

$\angle A G E=\angle C B E$ (exterior angles of a cyclic quadrilateral) (A)
By AA similarity test, $\triangle G E A$ is similar to $\triangle B E C$
(c)

$$
\begin{aligned}
G A: A F & =G A: C B \text { (corresponding sides of congruent triangles) } \\
& =A E: B E \text { (ratio of corresponding sides of similar triangles) } \\
& =\mathbf{3}: \mathbf{1}
\end{aligned}
$$

(d) Not in syllabus

$$
\begin{aligned}
E H^{2} & =E B \times E A(\text { tangent-secant theorem }) \\
& =E B \times 3 E B \\
& =3 E B^{2}(\text { proven })
\end{aligned}
$$

2. (a)

$$
\begin{gathered}
\angle G E C=\angle G C B \text { (alternate segment theorem) (A) } \\
\angle E G C=\angle C G B \text { (common angle) (A) }
\end{gathered}
$$

By AA similarity test, $\triangle E G C$ is similar to $\triangle C G B$
(b)

$$
\begin{gathered}
\angle B C E=\angle G C B(B C \text { bisects } \angle A C E) \\
\angle G E C=\angle G C B(\text { alternate segment theorem }) \\
\therefore \angle B C E=\angle G E C
\end{gathered}
$$

$\triangle B C E$ is an isosceles triangle

$$
\therefore B C=B E \text { (proven) }
$$

(c) Not in syllabus

$$
\begin{aligned}
G C^{2} & =G B \times G E \quad(\text { tangent-secant theorem }) \\
& =G B \times(G B+B E) \\
& =G B^{2}+G B \times B E \\
& =G B^{2}+G B \times B C \quad(\because B E=B C) \\
\therefore & G C^{2}-G B^{2}=G B \times B C \text { (proven) }
\end{aligned}
$$

(d) Not in syllabus

$$
\begin{aligned}
D G \times G B & =A G \times G C \text { (intersecting chord theorem) } \\
\frac{D G}{A G} & =\frac{G C}{G B} \\
\left(\frac{D G}{A G}\right)^{2} & =\left(\frac{G C}{G B}\right)^{2} \\
& =\frac{(G C)^{2}}{(G B)^{2}} \\
& =\frac{G B \times G E}{(G B)^{2}} \text { (tangent-secant theorem) } \\
& =\frac{G E}{G B}(\text { proven })
\end{aligned}
$$

3. (a)

$$
\begin{gathered}
\angle T P S=\angle S R P(\text { alternate segment theorem })(\mathrm{A}) \\
\angle S R P=\angle S P R(\mathrm{RS}=\mathrm{PS}) \\
\therefore \angle T P S=\angle S P R(\text { proven })
\end{gathered}
$$

(b)

$$
\begin{aligned}
\angle S P T= & \angle P Q T \text { (alternate segment theorem) (A) } \\
& \angle P T S \text { is a common angle }(\mathrm{A})
\end{aligned}
$$

By AA similarity test, $\triangle S P T$ is similar to $\triangle P Q T$

(c) Since $\triangle S P T$ is similar to $\triangle P Q T$

$$
\begin{gathered}
\frac{S P}{P Q}=\frac{P T}{Q T}=\frac{S T}{P T} \\
\frac{S P}{P Q}=\frac{P T}{Q T} \\
P T \times P Q=Q T \times S P
\end{gathered}
$$

Since $S P=S R$ (given),

$$
\therefore P T \times P Q=Q T \times S R \text { (proven) }
$$

4. (a)

$$
\begin{gathered}
\angle A D G=90^{\circ} \text { (tangent perpendicular to radius) } \\
O B \text { is parallel to } D G \text { (midpoint theorem) } \\
\angle A O B=\angle A D G=90^{\circ} \text { (corresponding angles) }
\end{gathered}
$$

Since $O B$ is the perpendicular bisector of $A D$

$$
A B=D B
$$

$\therefore A B D$ is an isosceles triangle

(b) By Pythagoras' Theorem,

$$
\begin{aligned}
& A G^{2}-D G^{2}=A D^{2}(\text { Pythagoras' Theorem }) \\
&(2 A B)^{2}-(2 D F)^{2}=A D^{2}(A B=B G \text { and } D F=F G) \\
& 4\left(A B^{2}-D F^{2}\right)=A D^{2} \\
& 4\left(D B^{2}-D F^{2}\right)=A D^{2}(A B=D B) \\
& \therefore D B^{2}-D F^{2}=\frac{1}{4} A D^{2}(\text { proven })
\end{aligned}
$$

(c) In $\triangle A D F$ and $\triangle D C F$,

$$
\begin{gathered}
\angle D A F=\angle C D F \text { (alternate segment theorem) (A) } \\
\angle A F D=\angle D F C(\text { common angles })(\mathrm{A})
\end{gathered}
$$

By AA similarity test, $\triangle A D F$ is similar to $\triangle D C F$
(d) Since $\triangle A D F$ and $\triangle D C F$ are similar,

$$
\begin{aligned}
\frac{D F}{C F} & =\frac{A F}{D F} \\
D F^{2} & =A F \times C F
\end{aligned}
$$

Since $G F=D F$,

$$
\therefore G F^{2}=A F \times C F \text { (proven) }
$$

12 Differentiation

12.1 Full Solutions

1. (a)

$$
\begin{aligned}
& y=\frac{x+1}{(2 x-5)^{3}} \\
& \frac{d y}{d x}=\frac{(2 x-5)^{3}(1)-(x+1)\left[3(2 x-5)^{2}(2)\right]}{\left[(2 x-5)^{3}\right]^{2}} \\
&=\frac{(2 x-5)^{2}[(2 x-5)-6 x-6]}{(2 x-5)^{6}} \\
&=\frac{2 x-5-6 x-6}{(2 x-5)^{4}} \\
&=\frac{-4 x-11}{(2 x-5)^{4}} \text { (shown) }
\end{aligned}
$$

(b) For y to not be an increasing function, $\frac{d y}{d x} \leq 0$

$$
\begin{aligned}
& -4 x-11 \leq 0 \\
& \therefore x \geq-2 \frac{3}{4}
\end{aligned}
$$

(c) When $x=3, \frac{d y}{d t}=46$

$$
\begin{aligned}
\therefore \frac{d x}{d t} & =\left.\frac{d x}{d y}\right|_{x=3} \times \frac{d y}{d t} \\
& =\frac{(2(3)-5)^{4}}{-4(3)-11} \times(46) \\
& =-2
\end{aligned}
$$

$$
\therefore \text { Rate of decrease }=\mathbf{2} \mathbf{u n i t s} / \mathrm{s}
$$

(d)

$$
\begin{gathered}
z=y^{3} \\
\therefore \frac{d z}{d y}=3 y^{2}
\end{gathered}
$$

When $x=3, y=4$

$$
\begin{aligned}
\left.\therefore \frac{d z}{d y}\right|_{y=4} & =3(4)^{2} \\
& =48
\end{aligned}
$$

$$
\therefore \frac{d z}{d t}=\frac{d z}{d y} \times \frac{d y}{d t}
$$

$$
\begin{aligned}
& =(48)(46) \\
& =\mathbf{2 2 0 8} \text { units } / \mathrm{s}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\angle D E C & =150^{\circ}-90^{\circ} \\
& =60^{\circ}
\end{aligned}
$$

$\therefore \triangle C D E$ is an equilateral triangle
\therefore Perimeter: $6 x+2 y=4$

$$
y=2-3 x
$$

\therefore Area of frame $=A_{\mathrm{ABCD}}+A_{\triangle \mathrm{CDE}}$

$$
=2 x y+\frac{1}{2}(2 x)(2 x) \sin 60^{\circ}
$$

$$
=2 x(2-3 x)+2 x^{2}\left(\frac{\sqrt{3}}{2}\right)
$$

$$
=2 x-6 x^{2}+\sqrt{3} x^{2}
$$

$$
=4 x+(\sqrt{3}-6) x^{2}(\text { shown })
$$

(b)

$$
\frac{d A}{d x}=4+2(\sqrt{3}-6) x
$$

Since the area of the frame is a maximum, $\frac{d A}{d x}=0$

$$
\begin{gathered}
\therefore 4+2(\sqrt{3}-6) x=0 \\
\boldsymbol{x}=-\frac{\mathbf{2}}{\sqrt{\mathbf{3}}-\mathbf{6}} \\
\frac{d^{2} A}{d x^{2}}=2(\sqrt{3}-6)<0
\end{gathered}
$$

Hence, from the second derivative test, A is maximum

$$
\begin{aligned}
\therefore \operatorname{Max} A & =4\left(-\frac{2}{\sqrt{3}-6}\right)+(\sqrt{3}-6)\left(-\frac{2}{\sqrt{3}-6}\right)^{2} \\
& =0.937218 \ldots \\
& =\mathbf{0 . 9 3 7} \text { (3.s.f.) }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\text { Total volume } & =120 \\
(3 x)(3 x)(x)+\pi\left(x^{2}\right) y & =120 \\
9 x^{3}+\pi x^{2} y & =120 \\
\boldsymbol{y}=\frac{\mathbf{1 2 0}-\mathbf{9} \boldsymbol{x}^{\mathbf{3}}}{\boldsymbol{\pi} \boldsymbol{x}^{\mathbf{2}}} &
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Total surface area } & =2\left(9 x^{2}\right)+4\left(3 x^{2}\right)+2 \pi x y \\
& =30 x^{2}+2 \pi x\left(\frac{120-9 x^{3}}{\pi x^{2}}\right) \\
& =30 x^{2}+\frac{240}{x}-18 x^{2} \\
\therefore A & =\frac{240}{x}+12 x^{2} \text { (shown) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
A & =\frac{240}{x}-12 x^{2} \\
\frac{d A}{d x} & =-\frac{240}{x^{2}}+24 x
\end{aligned}
$$

Since the surface area is stationary, $\frac{d A}{d x}=0$

$$
\begin{aligned}
&-\frac{240}{x^{2}}+24 x=0 \\
& 24 x^{3}=240 \\
& x^{3}=10 \\
& x=\sqrt[3]{10} \\
& \therefore A=\frac{240}{\sqrt[3]{10}}+12(\sqrt[3]{10})^{2} \\
&=167.097198 \ldots \\
&= 167 \mathbf{m m}^{2}(\mathbf{3 . s . f .})
\end{aligned}
$$

(d)

$$
\begin{aligned}
\frac{d^{2} A}{d x^{2}}= & \frac{480}{x^{3}}+24 \\
\left.\therefore \frac{d^{2} A}{d x^{2}}\right|_{x=\sqrt[3]{10}} & =\frac{480}{(\sqrt[3]{10})^{3}}+24 \\
& =72>0
\end{aligned}
$$

Hence, the stationary value of A is a minimum
4. (a)

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\sin x}{2 \tan x+\cos x}\right) & =\frac{(2 \tan x+\cos x) \cos x-\sin x\left(2 \sec ^{2} x-\sin x\right)}{(2 \tan x+\cos x)^{2}} \\
& =\frac{2 \tan x \cos x+\cos ^{2} x-2 \sin x \sec ^{2} x+\sin ^{2} x}{(2 \tan x+\cos x)^{2}} \\
& =\frac{2 \sin x-2 \sin x\left(1+\tan ^{2} x\right)+\cos ^{2} x+\sin ^{2} x}{(2 \tan x+\cos x)^{2}} \\
& =\frac{2 \sin x-2 \sin x-2 \sin x \tan ^{2} x+1}{(2 \tan x+\cos x)^{2}} \\
& =\frac{1-2 \sin x \tan 2}{(2 \tan x+\cos x)^{2}}
\end{aligned}
$$

$$
\therefore a=1 \quad b=-1
$$

(b)

$$
\begin{aligned}
& y=(1+x) e^{3 x} \\
& \frac{d y}{d x}=(1+x) 3 e^{3 x}+(1) e^{3 x} \\
&= 4 e^{3 x}+3 x e^{3 x} \\
& \frac{d^{2} y}{d x^{2}}= 12 e^{3 x}+\left[3 e^{3 x}+3 x\left(3 e^{3 x}\right)\right] \\
&= 15 e^{3 x}+9 x e^{3 x} \\
& \therefore \text { RHS }=9 y+\frac{d^{2} y}{d x^{2}} \\
&=9 {\left[(1+x) e^{3 x}\right]+15 e^{3 x}+9 x e^{3 x} } \\
&=9 e^{3 x}+9 x e^{3 x}+15 e^{3 x}+9 x e^{3 x} \\
&= 24 e^{3 x}+18 x e^{3 x} \\
&= 6\left(4 e^{3 x}+3 x e^{3 x}\right) \\
&= 6\left(\frac{d y}{d x}\right) \\
&= \mathrm{LHS}(\text { shown })
\end{aligned}
$$

13 Integration

13.1 Full Solutions

1. Point of intersection between the 2 curves:

$$
\begin{aligned}
\frac{54}{x} & =2 x^{2} \\
x^{3} & =27 \\
x & =3
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Area of shaded region } & =\int_{0}^{3} 2 x^{2} d x+\int_{3}^{7} \frac{54}{x} d x \\
& =\left[\frac{2}{3} x^{3}\right]_{0}^{3}+[54 \ln x]_{3}^{7} \\
& =\frac{2}{3}(27)+54(\ln 7-\ln 3) \\
& =63.754084 . \ldots \\
& =\mathbf{6 3 . 8} \text { units }^{2}(\mathbf{3 . s . f .})
\end{aligned}
$$

2. (a) Based on the given information, we can see that $f(x)$ is continuous

$$
\begin{aligned}
\therefore \int_{0}^{5} f(x) d x+\int_{5}^{6} f(x) d x & =\int_{0}^{2} f(x) d x+\int_{2}^{6} f(x) d x \\
& =10+14 \\
& =\mathbf{2 4}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\int \sqrt{2 x+1} d x & =\int(2 x+1)^{\frac{1}{2}} d x \\
& =\frac{(2 x+1)^{\frac{3}{2}}}{\frac{3}{2}(2)}+c \\
& =\frac{1}{2}(2 x+1)^{\frac{3}{2}}+c
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int \frac{2 x^{\frac{1}{2}}}{x \sqrt{x}} d x & =2 \int \frac{1}{x} d x \\
& =2 \ln |x|+\boldsymbol{c}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\int_{4}^{8} f(x) d x & =\int_{0}^{8} f(x) d x-\int_{0}^{4} f(x) d x \\
& =16-(-7) \\
& =\mathbf{2 3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Area of shaded region } & =\int_{0}^{4} f(x)+3 d x \\
& =\int_{0}^{4} f(x) d x+\int_{0}^{4} 3 d x \\
& =(-7)+[3 x]_{0}^{4} \\
& =-7+12 \\
& =\mathbf{5} \text { units }^{2}
\end{aligned}
$$

4. (a) (i) When $n=1$,

$$
\begin{gathered}
\left.f^{\prime}(x)\right|_{n=1}=\frac{8}{2 x+1} \\
\therefore f(x)=\int \frac{8}{2 x+1} d x \\
=4 \ln (2 x+1)+c
\end{gathered}
$$

Hence, since $f(1)=0$,

$$
\begin{aligned}
4 \ln 3+c & =0 \\
c & =-4 \ln 3 \\
\therefore f(x)=4 \ln (2 x+1)-4 \ln 3 & \text { OR } \quad f(x)=4 \ln \left(\frac{2 x+1}{3}\right)
\end{aligned}
$$

(ii) When $n=4$,

$$
\begin{gathered}
\left.f^{\prime}(x)\right|_{n=1}=\frac{8}{(2 x+1)^{4}} \\
\begin{aligned}
\therefore f(x) & =\int \frac{8}{(2 x+1)^{4}} d x \\
& =8 \int(2 x+1)^{-4} d x \\
& =-\frac{4}{3}(2 x+1)^{-3}+c
\end{aligned}
\end{gathered}
$$

Hence, since $f(1)=0$,

$$
\begin{gathered}
-\frac{4}{3}(2(1)+1)^{-3}+c=0 \\
c=\frac{4}{81} \\
\therefore f(x)=\frac{\mathbf{4}}{\mathbf{8 1}}-\frac{4}{\mathbf{3 (2 x + 1) ^ { 3 }}}
\end{gathered}
$$

(b) For $f(x)$ to have any stationary points, $f^{\prime}(x)=0$

$$
\frac{8}{(2 x+1)^{n}}=0
$$

For the above to be well-defined, $n<0$

$$
\therefore n \geq 0
$$

14 Differentiation \& Integration

14.1 Full Solutions

1. (a)

$$
\begin{aligned}
& y=\frac{2 x}{\sqrt{8 x-x^{2}}} \\
& \frac{d y}{d x}=\frac{\left(\sqrt{2 x-x^{2}}\right)(2)-2 x\left[\frac{1}{2}\left(8 x-x^{2}\right)^{-\frac{1}{2}}(8-2 x)\right]}{8 x-x^{2}} \\
&=\frac{2 \sqrt{8 x-x^{2}}-\frac{8 x-2 x^{2}}{\sqrt{8 x-x^{2}}}}{8 x-x^{2}} \\
&=\frac{2\left(8 x-x^{2}\right)-8 x+2 x^{2}}{\sqrt{\left(8 x-x^{2}\right)^{3}}} \\
&=\frac{8 x}{\sqrt{\left(8 x-x^{2}\right)^{3}}}(\text { shown })
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{2}^{5} \frac{2 x}{\sqrt{\left(8 x-x^{2}\right)^{3}}} d x & =\frac{1}{4} \int_{2}^{5} \frac{8 x}{\sqrt{\left(8 x-x^{2}\right)^{3}}} d x \\
& =\frac{1}{4}\left[\frac{2 x}{\sqrt{8 x-x^{2}}}\right]_{2}^{5} \\
& =\frac{1}{4}\left[\frac{2(5)}{\sqrt{8(5)-(5)^{2}}}-\frac{2(2)}{\sqrt{8(2)-(2)^{2}}}\right] \\
& =\frac{1}{4}\left[\frac{10}{\sqrt{15}}-\frac{4}{\sqrt{12}}\right] \\
& =\frac{5}{2 \sqrt{3} \sqrt{5}}-\frac{1}{2 \sqrt{3}} \\
& =\frac{5-\sqrt{5}}{2 \sqrt{3} \sqrt{5}} \times \frac{\sqrt{3} \sqrt{5}}{\sqrt{3} \sqrt{5}} \\
& =\frac{5 \sqrt{3} \sqrt{5}-5 \sqrt{3}}{30} \\
& =\frac{\sqrt{3}}{6}(\sqrt{5}-1)
\end{aligned}
$$

(c)

$$
\begin{aligned}
&\left.y\right|_{x=4}=\frac{2(4)}{\sqrt{8(4)-(4)^{2}}} \\
&=2 \\
& \begin{aligned}
\left.\frac{d y}{d x}\right|_{x=4} & =\frac{8(4)}{\sqrt{\left(8(4)-(4)^{2}\right)^{3}}} \\
& =\frac{1}{2} \\
\therefore \text { Gradient of normal } & =\frac{-1}{\left(\frac{1}{2}\right)} \\
& =-2 \\
\therefore y & =2
\end{aligned} \\
& y=-2(x-4)
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\frac{d}{d x}\left(x e^{2 x}\right) & =2 x e^{2 x}+e^{2 x} \\
& =\boldsymbol{e}^{2 x}(\mathbf{2 x}+\mathbf{1})
\end{aligned}
$$

(b) At the stationary point, $\frac{d y}{d x}=0$

$$
\begin{gathered}
\therefore e^{2 x}(2 x+1)=0 \\
e^{2 x}=0(\mathrm{rej}) \quad \text { or } \quad x=-\frac{\mathbf{1}}{\mathbf{2}}
\end{gathered}
$$

(c)

$$
\begin{aligned}
\int_{0}^{2} 4 x e^{2 x} d x & =2 \int_{0}^{2}\left(2 x e^{2 x}+e^{2 x}-e^{2 x}\right) d x \\
& =2 \int_{0}^{2} 2 x e^{2 x}+e^{2 x} d x-2 \int_{0}^{2} e^{2 x} d x \\
& =2\left[x e^{2 x}\right]_{0}^{2}-2\left[\frac{1}{2} e^{2 x}\right]_{0}^{2} \\
& =2\left((2) e^{2(2)}\right)-2\left[\frac{1}{2} e^{2(2)}-\frac{1}{2} e^{2(0)}\right] \\
& =164.794450 \ldots \\
& =\mathbf{1 6 5}(\mathbf{3 . s . f .})
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& y=\frac{3 x^{2}}{x-1} \\
& \frac{d y}{d x}=\frac{(x-1)(6 x)-\left(3 x^{2}\right)(1)}{(x-1)^{2}} \\
&= \frac{6 x^{2}-6 x-3 x^{2}}{(x-1)^{2}} \\
&= \frac{\mathbf{3 x}(\boldsymbol{x}-\mathbf{2})}{(\boldsymbol{x}-\mathbf{1})^{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{2}^{4} \frac{x^{2}-2 x}{3(x-1)^{2}} d x & =\frac{1}{9} \int_{2}^{4} \frac{3\left(x^{2}-2 x\right)}{(x-1)^{2}} d x \\
& =\frac{1}{9}\left[\frac{3 x^{2}}{x-1}\right]_{2}^{4} \\
& =\frac{1}{9}\left[\frac{3(4)^{2}}{(4)-1}-\frac{3(2)^{2}}{(2)-1}\right] \\
& =\frac{\mathbf{4}}{\mathbf{9}}
\end{aligned}
$$

(c) Given that $\frac{d y}{d t}=-4$,

$$
\begin{aligned}
\left.\frac{d x}{d t}\right|_{x=3} & =\frac{d x}{d y} \times \frac{d y}{d t} \\
& =\left[\frac{((3)-1)^{2}}{3(3)((3)-2)}\right](-4) \\
& =-\mathbf{1} \frac{\mathbf{7}}{\mathbf{9}} \text { units/second }
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
& y=\frac{x^{3}}{3}+x^{2}-8 x \\
& \frac{d y}{d x}=x^{2}+2 x-8
\end{aligned}
$$

At the stationary points, $\frac{d y}{d x}=0$

$$
\begin{gathered}
\therefore x^{2}+2 x-8=0 \\
(x-2)(x+4)=0 \\
\therefore x=2 \quad \text { or } \quad x=-4 \\
\frac{d^{2} y}{d x^{2}}=2 x+2
\end{gathered}
$$

When $x=2$,

$$
\begin{aligned}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=2} & =2(2)+2 \\
& =6>0
\end{aligned}
$$

Hence, $x=2$ is a minimum point
When $x=-4$,

$$
\begin{aligned}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=-4} & =2(-4)+2 \\
& =-6<0
\end{aligned}
$$

Hence, $x=-4$ is a maximum point
(b)

$$
\begin{aligned}
\text { Area under the curve } & =\int_{a}^{0}\left(\frac{1}{3} x^{3}+x^{2}-8 x\right) d x-\int_{0}^{b}\left(\frac{1}{3} x^{3}+x^{2}-8 x\right) d x \\
& =\left[\frac{1}{12} x^{4}+\frac{1}{3} x^{3}-4 x^{2}\right]_{a}^{0}-\left[\frac{1}{12} x^{4}+\frac{1}{3} x^{3}-4 x^{2}\right]_{0}^{b} \\
& =\left[0-\left(\frac{1}{12} a^{4}+\frac{1}{3} a^{3}-4 a^{2}\right)\right]-\left[\left(\frac{1}{12} b^{4}+\frac{1}{3} b^{3}-4 b^{2}\right)\right] \\
& =-\frac{1}{12} a^{4}-\frac{1}{3} a^{3}+4 a^{2}-\frac{1}{12} b^{4}-\frac{1}{3} b^{3}+4 b^{2} \\
& =\left[4\left(a^{2}+b^{2}\right)-\frac{1}{12}\left(a^{4}+b^{4}\right)-\frac{1}{3}\left(a^{3}+b^{3}\right)\right] \text { square units (shown) }
\end{aligned}
$$

5. (a) Let

$$
\begin{aligned}
& f(x)=\frac{\sin x+\cos x}{\sin x-\cos x} \\
& f^{\prime}(x)=\frac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x-\cos x)^{2}} \\
&=\frac{\left(\sin x \cos x-\sin ^{2} x-\cos ^{2} x+\sin x \cos x\right)-\left(\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x\right)}{(\sin x-\cos x)^{2}} \\
&=-\frac{2}{(\sin x-\cos x)^{2}} \\
& \therefore \frac{d}{d x}[\ln f(x)]=\frac{f^{\prime}(x)}{f(x)} \\
&=-\frac{2}{(\sin x-\cos x)^{2}} \times \frac{\sin x-\cos x}{\sin x+\cos x} \\
&=-\frac{2}{(\sin x+\cos x)(\sin x-\cos x)} \\
&=-\frac{2}{\sin ^{2} x-\cos x} \\
&=\frac{2}{\cos 2 x}(\operatorname{shown)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{d x}{1-2 \sin ^{2} x} & =\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\cos 2 x} d x \\
& =\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2}{\cos 2 x} d x \\
& =\frac{1}{2}\left[\ln \left(\frac{\sin x+\cos x}{\sin x-\cos x}\right)\right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \\
& =\frac{1}{2}\left[\ln \left(\frac{\sin \frac{\pi}{2}+\cos \frac{\pi}{2}}{\sin \frac{\pi}{2}-\cos \frac{\pi}{2}}\right)-\ln \left(\frac{\sin \frac{\pi}{3}+\cos \frac{\pi}{3}}{\sin \frac{\pi}{3}-\cos \frac{\pi}{3}}\right)\right] \\
& =\frac{1}{2}\left[\ln \left(\frac{1+0}{1-0}\right)-\ln \left(\frac{\frac{\sqrt{3}}{2}+\frac{1}{2}}{\frac{\sqrt{3}}{2}-\frac{1}{2}}\right)\right] \\
& =\frac{1}{2}\left[-\ln \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)\right] \\
& =-0.658478 \ldots \\
& =-\mathbf{0 . 6 5 8} \text { (3.s.f.) }
\end{aligned}
$$

15 Kinematics

15.1 Full Solutions

1. (a)

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& =6 t+k
\end{aligned}
$$

When $t=0, a=-3$

$$
\begin{aligned}
-3 & =6(0)+k \\
k & =-3 \text { (shown) }
\end{aligned}
$$

(b)

$$
v=3 t^{2}-3 t
$$

When the particle is at instantaneous rest, $v=0$

$$
\begin{aligned}
3 t^{2}-3 t & =0 \\
3 t(t-1) & =0
\end{aligned}
$$

$$
\therefore t=0 \quad \text { or } \quad t=1
$$

(c)

$$
\begin{aligned}
s & =\int v d t \\
& =t^{3}-\frac{3}{2} t^{2}+c
\end{aligned}
$$

When $t=0, S=0, c=0$

$$
\therefore s=t^{3}-\frac{3}{2} t^{2}
$$

When $t=1$,

$$
\begin{aligned}
s & =(1)^{3}-\frac{3}{2}(1)^{2} \\
& =-\frac{1}{2}
\end{aligned}
$$

When $t=4$,

$$
\begin{aligned}
& \qquad \begin{aligned}
s=(4)^{3}-\frac{3}{2}(4)^{2} \\
=40
\end{aligned} \\
& \begin{aligned}
\therefore \text { Total distance } & =40+\frac{1}{2}(2) \\
& =41 \mathrm{~m}
\end{aligned} \\
& \begin{aligned}
\therefore \text { Average speed } & =\frac{41}{4} \\
& =\mathbf{1 0} \frac{\mathbf{1}}{\mathbf{4}} \mathbf{m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

2. (a) When the particle is at instantaneous rest, $v=0$

$$
\begin{aligned}
5\left(1-e^{1-t}\right) & =0 \\
e^{1-t} & =1 \\
1-t & =\ln 1 \\
t & =\mathbf{1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
s & =\int v d t \\
& =5 t+5 e^{1-t}+c
\end{aligned}
$$

When $t=0, s=0$

$$
\begin{gathered}
\therefore 5 e+c=0 \\
c=-5 e \\
\therefore s=5 t+5 e^{1-t}-5 e
\end{gathered}
$$

$$
\therefore \text { Distance }=\left.s\right|_{t=2}-\left.s\right|_{t=1}
$$

$$
=\left[5(2)+5 e^{1-2}-5 e\right]-\left[5(1)+5 e^{1-1}-5 e\right]
$$

$$
=1.839397 \ldots
$$

$$
=1.84 \mathrm{~m} \text { (3.s.f.) }
$$

(c)

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& =5 e^{1-t}
\end{aligned}
$$

When $t=2.5$,

$$
\begin{aligned}
a & =5 e^{1-2.5} \\
& =1.115650 \ldots \\
& =\mathbf{1} .12 \mathbf{m} / \mathbf{s}^{\mathbf{2}}
\end{aligned}
$$

(d) As $t \rightarrow \infty, e^{1-t} \rightarrow 0$

$$
\therefore v=5 \mathrm{~m} / \mathrm{s}
$$

3. (a) When $t=0$,

$$
\begin{aligned}
\left.a\right|_{t=0} & =2 \cos \left(\frac{0}{3}\right) \\
& =\mathbf{2} \mathbf{m s}^{-\mathbf{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
v & =\int a d t \\
& =6 \sin \left(\frac{t}{3}\right)+c
\end{aligned}
$$

When $t=0, v=2$

$$
\begin{aligned}
& \therefore 2=6 \sin 0+c \\
& c=2 \\
& \therefore v= 6 \sin \left(\frac{t}{3}\right)+2
\end{aligned}
$$

At instantaneous rest, $v=0$

$$
\begin{gathered}
6 \sin \left(\frac{t}{3}\right)+2=0 \\
\sin \left(\frac{t}{3}\right)=-\frac{1}{3} \\
\alpha=\sin ^{-1}\left(\frac{1}{3}\right)(\text { Quadrant } 3 \& 4)
\end{gathered}
$$

In Quadrant 3,

$$
\begin{aligned}
\frac{t}{3} & =\pi+\sin ^{-1}\left(\frac{1}{3}\right) \\
t & =3\left[\pi+\sin ^{-1}\left(\frac{1}{3}\right)\right] \\
& =10.444288 \ldots \\
& =10.4 \mathrm{sec}
\end{aligned}
$$

In Quadrant 4,

$$
\begin{aligned}
& \begin{aligned}
& \frac{t}{3}=2 \pi-\sin ^{-1}\left(\frac{1}{3}\right) \\
& t=3\left[2 \pi-\sin ^{-1}\left(\frac{1}{3}\right)\right] \\
&=17.830045 \ldots \\
&=17.8 \mathrm{sec} \\
& \therefore t=\mathbf{1 0 . 4} \mathbf{~ s e c} \quad \text { or } \quad t=\mathbf{1 7 . 8} \mathbf{~ s e c}
\end{aligned}
\end{aligned}
$$

(c)

$$
\begin{aligned}
s & =\int v d t \\
& =-18 \cos \left(\frac{t}{3}\right)+2 t+c
\end{aligned}
$$

When $t=0, s=0$

$$
\begin{aligned}
\therefore 0 & =-18 \cos 0+2(0)+c \\
c & =18 \\
\therefore s & =-18 \cos \left(\frac{t}{3}\right)+2 t+18
\end{aligned}
$$

When $t=10.444 \ldots \mathrm{sec}$,

$$
\begin{aligned}
s & =-18 \cos \left(\frac{3\left[\pi+\sin ^{-1}\left(\frac{1}{3}\right)\right]}{3}\right)+2\left\{3\left[\pi+\sin ^{-1}\left(\frac{1}{3}\right)\right]\right\}+18 \\
& =55.859140 \ldots \mathrm{~m}
\end{aligned}
$$

When $t=15 \mathrm{sec}$,

$$
\begin{aligned}
s & =-18 \cos \left(\frac{15}{3}\right)+2(15)+18 \\
& =42.894080 \ldots \mathrm{~m}
\end{aligned}
$$

\therefore Total distance travelled $=(55.859140 \ldots)+(55.859140 \ldots-42.894080 \ldots)$

$$
\begin{aligned}
& =68.82 \ldots \\
& =\mathbf{6 8 . 8} \mathbf{~ m} \text { (3.s.f.) }
\end{aligned}
$$

4. (a)

$$
\frac{d v}{d t}=5-t
$$

When the velocity is maximum, $\frac{d v}{d t}=0$

$$
\begin{aligned}
\therefore 0 & =5-t \\
t & =5 \mathrm{sec} \text { (shown) }
\end{aligned}
$$

(b) Velocity-time graph

(c) When $t=5$,

$$
\begin{aligned}
v & =5(5)-\frac{1}{2}(5)^{2}+4 \\
& =16 \frac{1}{2}
\end{aligned}
$$

Since the deceleration is uniform, it will form a straight-line graph with a negative gradient of -1.5

$$
\begin{aligned}
\therefore v-16 \frac{1}{2} & =-1 \frac{1}{2}(t-5) \\
v & =-1 \frac{1}{2} t+24
\end{aligned}
$$

Hence, at $B, v=0$

$$
\begin{aligned}
\therefore 0 & =-1 \frac{1}{2} t+24 \\
t & =\mathbf{1 6} \mathbf{~ s e c}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Total distance } & =\text { Area under the graph } \\
& =\int_{0}^{5} 5 t-\frac{1}{2} t^{2}+4 d t+\frac{1}{2}\left(16 \frac{1}{2}\right)(16-5) \\
& =\left[\frac{5}{2} t^{2}-\frac{1}{6} t^{3}+4 t\right]_{0}^{5}+90 \frac{3}{4} \\
& =\left[\frac{5}{2}(5)^{2}-\frac{1}{6}(5)^{3}+4(5)\right]+90 \frac{3}{4} \\
& =\mathbf{1 5 2} \frac{\mathbf{5}}{\mathbf{1 2}} \mathbf{m}
\end{aligned}
$$

