A LEVEL
 H2 MATHEMATICS VECTORS

MASTERY

CHAPTER ANALYSIS

- 3D Vectors, Vector Algebra
- Scalar (Dot) and Vector (Cross) Product
- Vector Equations for Lines
- Vector Equations for Planes

WEIGHTAGE

- Important to understand concepts instead of blindly memorizing
- Good to draw out diagrams to aid understanding
- Unfortunately, practice makes perfect. Make sure to practice the hard questions.
- Huge topic, tested every year without fail
- Minimally 2 questions a year on Vectors
- Typically constitutes about 10% of final grade, much higher weightage as compared to other chapters

BASIC VECTOR PROPERTIES VECTOR ALGEBRA
 PARALLEL AND NON-PARALLEL VECTORS
 SCALAR PRODUCT (DOT PRODUCT)
 VECTOR PRODUCT (CROSS PRODUCT)

Basic Vector Properties

$$
\begin{gathered}
\overrightarrow{|\boldsymbol{O A}|}=|\boldsymbol{a}| \\
=\sqrt{4^{2}+7^{2}+11^{2}}
\end{gathered}
$$

$$
\overrightarrow{O A}=a=\left(\begin{array}{c}
4 \\
7 \\
11
\end{array}\right)=4 i+7 j+11 k
$$

The zero/null vector is a vector with zero magnitude and no direction.

$$
\mathbf{0}=\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)
$$

\boldsymbol{O} is the origin, from which we usually associate our position vectors.

$$
i=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

A unit vector, denoted by $\widehat{\boldsymbol{a}}$, is a vector whose magnitude is 1.

$$
\widehat{a}=\frac{a}{|a|}
$$

- A scalar quantity has magnitude but no associated direction (e.g. distance and speed).
- A vector quantity has both magnitude and direction (e.g. displacement and velocity).
- A position vector defines the position of a point relative to another.
- A free/displacement vector is a vector with no associated position.

Modulus of Vector $=$ Magnitude or Length of Vector

$$
\begin{gathered}
\text { If } \boldsymbol{a}=\left(\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
\boldsymbol{z}
\end{array}\right) \text { then } \\
|a|=\sqrt{x^{2}+y^{2}+z^{2}}
\end{gathered}
$$

Vector Algebra

$$
\begin{aligned}
& a+b=\overrightarrow{O A}+\overrightarrow{O B} \\
& =\overrightarrow{O A}+\overrightarrow{A C}=\overrightarrow{O B}+\overrightarrow{B C}
\end{aligned}
$$

$$
\text { In general, } \overrightarrow{\boldsymbol{U} V}=\overrightarrow{\boldsymbol{O} \boldsymbol{V}}-\overrightarrow{\boldsymbol{O U}}
$$

0 a A

$$
a \pm b=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \pm\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \pm x_{2} \\
y_{1} \pm y_{2} \\
z_{1} \pm z_{2}
\end{array}\right)
$$

B

The negative of a vector has the same magnitude as a vector but is opposite in direction (i.e. \boldsymbol{a} and $-\boldsymbol{a}$).

$$
\text { If } \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{l}
x_{1}-x_{2} \\
y_{1}-y_{2} \\
z_{1}-z_{2}
\end{array}\right)
$$

$$
|\overrightarrow{A B}|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}
$$

Equal Vectors

Vectors are equal when they have the same direction and magnitude. If $\overrightarrow{\boldsymbol{A B}}=\left(\begin{array}{c}\boldsymbol{d} \\ \boldsymbol{e} \\ \boldsymbol{f}\end{array}\right)$ and $\overrightarrow{\boldsymbol{C D}}=\left(\begin{array}{c}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{q}\end{array}\right), \overrightarrow{\boldsymbol{A B}}=\overrightarrow{\boldsymbol{C D}}$, then $\left(\begin{array}{l}\boldsymbol{d} \\ \boldsymbol{e} \\ \boldsymbol{f}\end{array}\right)=\left(\begin{array}{l}\boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r}\end{array}\right)$ and $\boldsymbol{d}=\boldsymbol{p}, \boldsymbol{e}=\boldsymbol{q}$, and $\boldsymbol{f}=\boldsymbol{r}$

Scalar Multiplication

When vector \boldsymbol{a} is multiplied by the scalar λ, the magnitude of the vector changes and the vector $\lambda \boldsymbol{a}$ has magnitude λ times of \boldsymbol{a} (i.e. $|\lambda \boldsymbol{a}|=\lambda|\boldsymbol{a}|$)

- If $\lambda>0, \lambda \boldsymbol{a}$ and \boldsymbol{a} are in the same direction
- If $\lambda=0, \lambda \boldsymbol{a}$ is a zero vector i.e. $\lambda \boldsymbol{a}=\mathbf{0}$
- If $\lambda<0, \lambda \boldsymbol{a}$ and \boldsymbol{a} are in opposite directions

$$
\begin{aligned}
& a-b=a+(-b)=\overrightarrow{B O}+\overrightarrow{O A} \\
& =\overrightarrow{O A}-\overrightarrow{O B}=\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{B A}
\end{aligned}
$$

Laws of Vector Algebra

1. $a+b=b+a$
2. $\lambda a=a \lambda$
3. $(a+b)+c=a+(b+c)$
4. $(\lambda \mu) \boldsymbol{a}=\lambda(\mu \boldsymbol{a})$
5. $(\lambda+\mu) \boldsymbol{a}=\lambda \boldsymbol{a}+\mu \boldsymbol{a}$
6. $\lambda(\boldsymbol{a}+\boldsymbol{b})=\lambda \boldsymbol{a}+\lambda \boldsymbol{b}$

Parallel \& Non-Parallel Vectors

Collinearity

Three points, P, Q and R are collinear if and only if $\overrightarrow{\boldsymbol{P Q}} / / \overrightarrow{\boldsymbol{P R}}$, with P as the common point i.e. $\overrightarrow{\boldsymbol{P Q}}=\lambda \overrightarrow{\boldsymbol{P R}}$ for some $\lambda \in \mathbb{R} \backslash\{0\}$

The Ratio Theorem

If R is the midpoint of $A B$,

$$
\boldsymbol{r}=\frac{\mu \boldsymbol{a}+\lambda \boldsymbol{b}}{\lambda+\mu}
$$

Scalar Product (Dot Product)

$$
a \cdot b<0
$$

Obtuse
θ

The scalar product of two vectors \mathbf{a} and \mathbf{b}, is defined as

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

θ is the angle between \boldsymbol{a} and \boldsymbol{b} such that \boldsymbol{a} and \boldsymbol{b} are either both leaving from or both meeting at the same point

Perpendicular Vectors

$$
\begin{aligned}
& a \cdot b=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \cdot\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \\
&=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
\end{aligned}
$$

$\boldsymbol{a} \cdot \boldsymbol{b}$ is called a scalar product because the product is a scalar

Two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular
i.e. $\boldsymbol{a} \perp \boldsymbol{b}$, if and only if $\boldsymbol{a} \cdot \boldsymbol{b}=\mathbf{0}$

Length of Projection
$|\overrightarrow{O P}|=|a \cdot \widehat{b}|=\frac{|a \cdot b|}{|b|}$
Angle Between Two Non-Zero Vectors $\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}$

Scalar Product Properties

1. $a \cdot b=b \cdot a$
2. $a \cdot(b \pm c)=(a \cdot b) \pm(a \cdot c)$
3. $\lambda(a \cdot b)=(\lambda a) \cdot b=a \cdot(\lambda b)$
4. $a \cdot a=|a|^{2}$

Link this to direction cosines, which is the cosine of the angle between a vector and the $x-, y$ - and z-axes

Vector Product (Cross Product)

The vector product of two vectors \mathbf{a} and \mathbf{b}, is defined as

$$
\boldsymbol{a} \times \boldsymbol{b}=(|\boldsymbol{a}||\boldsymbol{b}| \sin \theta) \widehat{\boldsymbol{n}}
$$

θ is the angle between \boldsymbol{a} and \boldsymbol{b}, and $\widehat{\boldsymbol{n}}$ is the unit vector perpendicular to both \boldsymbol{a} and \boldsymbol{b} (unit vector of normal)
$\boldsymbol{a} \times \boldsymbol{b}$ is called a vector product because the product is a vector

$$
\begin{aligned}
& a \times b=\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \times\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right) \\
& =\left(\begin{array}{r}
y_{1} z_{2}-z_{1} y_{2} \\
-\left(x_{1} z_{2}-z_{1} x_{2}\right) \\
x_{1} y_{2}-y_{1} x_{2}
\end{array}\right)
\end{aligned}
$$

Parallel Vectors

Two non-zero vectors \boldsymbol{a} and \boldsymbol{b} are parallel

$$
\text { if and only if } \boldsymbol{a} \times \boldsymbol{b}=\mathbf{0}
$$

Area of Triangle $\mathrm{OAB}=\frac{1}{2}|a \times b|$
Area of Parallelogram OACB $=|a \times b|$

Vector Product Properties

1. $a \times b=-(b \times a)$
2. $\quad a \times(b \pm c)=(a \times b) \pm(a \times c)$
3. $\lambda(a \times b)=(\lambda a) \times b=a \times(\lambda b)$
4. $\quad a \times a=0$
5. $\quad|\boldsymbol{a} \times \boldsymbol{b}|=|\boldsymbol{b} \times \boldsymbol{a}|=|\boldsymbol{a}||\boldsymbol{b}||\sin \theta|$

VECTORS II

EQUATIONS OF STRAIGHT LINES CALCULATIONS FOR A POINT AND A LINE CALCULATIONS FOR A PAIR OF LINES

Equations of Straight Lines

Vector Equation

Parametric Equation

From vector equation, let r $=\left(\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right)$ to transform into parametric equation

Cartesian Equation

$$
\left\{\begin{array}{l}
\lambda=\frac{x-a_{1}}{b_{1}} \\
\lambda=\frac{y-a_{2}}{b_{2}}, \quad \lambda \in \mathbb{R} \\
\lambda=\frac{z-a_{3}}{b_{3}}
\end{array}\right.
$$

Equate λ

$$
\frac{x-a_{1}}{b_{1}}=\frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}, \quad \lambda \in \mathbb{R}
$$

If $\boldsymbol{b}_{\mathbf{1}}=\mathbf{0}$, cartesian equations becomes

$$
x=a_{1}, \frac{y-a_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}
$$

Calculations For A Point And A Line

Determine If A Point Lies On A Line

To determine if a point lies on a line, substitute the point into the vector equation of the line and solve for a unique value of λ

If a unique solution is found, the point lies on the line. If not, it does not lie on the line.

Point $\mathrm{A}(2,-3,9)$ lies on the line $l_{1}: r=\left(\begin{array}{c}1 \\ -6 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$ because $\left(\begin{array}{c}2 \\ -3 \\ 9\end{array}\right)=\left(\begin{array}{c}1 \\ -6 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$ satisfies the equation l_{1} with $\lambda=1$ (unique solution).

Perpendicular Distance From A Point To A Line

1. Find foot of the perpendicular from point to line (see right side)
2. Find modulus of $\overrightarrow{\boldsymbol{O F}}$

Foot Of Perpendicular From A Point To A Line

To find foot of perpendicular $\overrightarrow{\boldsymbol{O F}}$ from Point A to line l :

1. Let F be foot of perpendicular from point to line
2. Since F lies on l, let $\overrightarrow{\boldsymbol{O F}}=$ vector equation of line
3. Since $\overrightarrow{\boldsymbol{A F}} \perp l$, let $\overrightarrow{\boldsymbol{A F}} \cdot \boldsymbol{b}=\mathbf{0}$ to find value of λ
4. Sub back value of λ into l to find $\overrightarrow{\boldsymbol{O F}}$

To find foot of perpendicular $\overrightarrow{\boldsymbol{O F}}$ from Point $\mathrm{A}(2,-3,9)$ to line $l_{1}: r=\left(\begin{array}{c}1 \\ -6 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$:

1. Let F be foot of perpendicular from point to line
2. Since F lies on l, let $\overrightarrow{\boldsymbol{O F}}=\left(\begin{array}{c}\mathbf{1} \\ -6 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}\mathbf{1} \\ 3 \\ 6\end{array}\right)$
3. Since $\overrightarrow{A F} \perp l$, let $\overrightarrow{A F} \cdot \boldsymbol{b}=\left[\left(\begin{array}{c}1+\lambda \\ -6+3 \lambda \\ 3+6 \lambda\end{array}\right)-\left(\begin{array}{c}2 \\ -3 \\ 9\end{array}\right)\right] \cdot\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)=\mathbf{0} \Rightarrow \lambda=-\frac{23}{13}$
4. Sub λ into l to find $\overrightarrow{\boldsymbol{O F}} \Rightarrow \overrightarrow{\boldsymbol{O F}}=\left(\begin{array}{c}1 \\ -6 \\ 3\end{array}\right)-\frac{23}{13}\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)=-\frac{1}{13}\left(\begin{array}{c}10 \\ \mathbf{1 4 7} \\ 99\end{array}\right)$

Calculations For A Pair Of Lines

Relationship Between Two Lines

	Parallel	Not Parallel
Intersecting	Same Line	Intersecting
Not Intersecting	Parallel Lines	Skew Lines

Angle Between Two Non-Zero Vectors

$$
\cos \theta=\frac{\boldsymbol{b}_{\mathbf{1}} \cdot \boldsymbol{b}_{\mathbf{2}}}{\left|\boldsymbol{b}_{\mathbf{1}}\right|\left|\boldsymbol{b}_{\mathbf{2}}\right|}
$$

Angle Between Two Non-Zero Vectors

θ may be acute or obtuse,
depending on the sign of the direction vectors
If θ is acute, then the acute angle is θ
If θ is obtuse, then the acute angle is $180^{\circ}-\theta$

VECTORS II

EQUATIONS OF PLANES
 CALCULATIONS FOR A LINE AND A PLANE CALCULATIONS FOR A POINT AND A PLANE CALCULATIONS FOR TWO PLANES CALCULATIONS FOR THREE PLANES

Equations of Planes

Vector Equation

You may use the vector equation of a plane
to find any point on the plane i.e. $\mathbf{r}=\overrightarrow{\boldsymbol{O R}}$

Scalar Product Form

To find normal vector \boldsymbol{n} :
Cross product any two direction vectors on the plane i.e. $\boldsymbol{b} \times \boldsymbol{c}$

Cartesian Equation

$\xrightarrow[\text { Let } \mathrm{r}=\left(\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right)]{ } \quad \pi:\left(\begin{array}{l}\boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z}\end{array}\right) \cdot\left(\begin{array}{l}\boldsymbol{n}_{\mathbf{1}} \\ \boldsymbol{n}_{\mathbf{2}} \\ \boldsymbol{n}_{\mathbf{3}}\end{array}\right)=d$

Where $\mathrm{d}=a_{1} \boldsymbol{n}_{1}+a_{2} \boldsymbol{n}_{\mathbf{2}}+a_{3} \boldsymbol{n}_{\mathbf{3}}$

Calculations For A Line And A Plane

Angle Between A Line And A Plane

Let θ is the acute angle between the line l and the plane π. To find θ we can first find ϕ, the acute angle between l and the normal \boldsymbol{n} to the plane π, which is also the angle between \boldsymbol{b} and \boldsymbol{n}. Then $\theta=90^{\circ}-\phi$

1. Use $\cos \phi=\frac{\boldsymbol{b} \cdot \boldsymbol{n}}{|\boldsymbol{b}||\boldsymbol{n}|}$ to find ϕ
2. Then $\theta=90^{\circ}-\phi$
3. If $\theta>90^{\circ} \Rightarrow \theta-90^{\circ}$ to find acute angle between l and π

Point Of Intersection Between A Line And A Plane

There are 3 possible scenarios for the relationship between l and π :

1. $\quad l$ and π do not intersect

2. l and π intersect at a point

To determine the relationship between l and π :

Calculations For A Point And A Plane

Determine If A Point Lies On A Plane

To determine if a point lies on a line, substitute the point into the scalar product equation of the plane and observe if $\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{d}$

Perpendicular Distance From A Point To A Plane

1. Find foot of the perpendicular from point to plane (see right side)
2. Find modulus of $\overrightarrow{\boldsymbol{O F}}$

Foot Of Perpendicular From A Point To A Plane

To find foot of perpendicular $\overrightarrow{\boldsymbol{O F}}$ from Point A to plane π :

1. Let F be foot of perpendicular from point to plane
2. Let $l_{A F}$ be a line with $\boldsymbol{r}=\overrightarrow{\boldsymbol{O} \boldsymbol{A}}+\lambda \boldsymbol{n}$ where \boldsymbol{n} is the normal vector of the plane

3. Since $l_{A F}$ intersects the plane, let $l_{A F} \cdot \boldsymbol{n}=\boldsymbol{d}$ to find value of λ
4. Sub value of λ into $l_{A F}$ to find $\overrightarrow{\boldsymbol{O F}}$

To find foot of perpendicular $\overrightarrow{\boldsymbol{O F}}$ from Point A $(2,-3,9)$ to plane $\pi: \boldsymbol{r} \cdot\left(\begin{array}{c}\mathbf{1} \\ \mathbf{1} \\ -3\end{array}\right)=1$:

1. Let F be foot of perpendicular from point to plane
2. Let $l_{A F}: \boldsymbol{r}=\left(\begin{array}{c}\mathbf{2} \\ -\mathbf{3} \\ \mathbf{9}\end{array}\right)+\lambda\left(\begin{array}{c}\mathbf{1} \\ \mathbf{1} \\ -3\end{array}\right)$
3. Since $l_{A F}$ intersects the plane, let $l_{A F} \cdot \boldsymbol{n}=1$

$$
\left[\left(\begin{array}{c}
2+\lambda \\
-3+\lambda \\
9-3 \lambda
\end{array}\right)\right] \cdot\left(\begin{array}{c}
1 \\
\mathbf{1} \\
-3
\end{array}\right)=1 \Rightarrow \lambda=\frac{29}{11}
$$

4. Sub λ into $l_{A F}$ to find $\overrightarrow{\boldsymbol{O F}} \Rightarrow \overrightarrow{\boldsymbol{O F}}=\left(\begin{array}{c}2 \\ -3 \\ 9\end{array}\right)+\frac{29}{11}\left(\begin{array}{c}1 \\ \mathbf{1} \\ -3\end{array}\right)=\frac{1}{11}\left(\begin{array}{c}\mathbf{5 1} \\ -\mathbf{4} \\ 12\end{array}\right)$

Calculations For Two Planes

Intersection Of Two Planes

Case 1: Do Not Intersect, Parallel Planes

$\boldsymbol{n}_{\mathbf{1}}=\lambda \boldsymbol{n}_{\mathbf{3}}$ for some $\lambda \in \mathbb{R}$

Case 2: Two Planes Intersect In A Line

Use G.C. to solve equations for 2 planes using simultaneous equations to get 2 equations containing z. Let $z=t$ and manipulate equations to get equation of a line.

Case 2 Example

$$
\begin{aligned}
& \pi_{1}: x+3 y+2 z=4 \\
& \pi_{2}: x-y-z=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using G.C. and letting } \mathrm{z}=\mathrm{t} \text { : } \\
& \begin{array}{l}
x=4+\frac{1}{4} t \\
y=-\frac{3}{4} t \\
z=t
\end{array} \quad \Rightarrow \quad \boldsymbol{r}=\left(\begin{array}{l}
\mathbf{4} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right)+t\left(\begin{array}{c}
\frac{\mathbf{1}}{\mathbf{4}} \\
-\frac{\mathbf{3}}{\mathbf{4}} \\
\mathbf{1}
\end{array}\right), t \in \mathbb{R}
\end{aligned}
$$

Angle Between Two Planes

$$
\cos \theta=\frac{\boldsymbol{n}_{\mathbf{1}} \cdot \boldsymbol{n}_{\mathbf{2}}}{\left|\boldsymbol{n}_{\mathbf{1}}\right|\left|\boldsymbol{n}_{\mathbf{2}}\right|}
$$

The angle
between two
planes is the

Angle Between Two Planes

θ may be acute or obtuse,
depending on the sign of the direction vectors
If θ is acute, then the acute angle is θ If θ is obtuse, then the acute angle is $180^{\circ}-\theta$

Calculations For Three Planes

Relationship Between Three Planes

Case 1: Intersect At A Single Point

Use G.C. to solve equations for 3 planes using simultaneous equations to get unique values for x, y and z

Case 2: Intersect Along One Common Line

Use G.C. to solve equations for 3 planes using simultaneous equations to get 3 equations containing z. Manipulate equations to get equation of a line.
\(\left.\begin{array}{|ll}\hline Case 2 Example \& \begin{array}{l}\pi_{1}: 2 x+3 y-3 z=14

\pi_{2}:-3 x+y+10 z=-32

\pi_{3}: x+7 y+4 z=-4\end{array}\end{array}\right\}\)| Using G.C. and |
| :--- |
| letting $z=\mathrm{t}:$ | | $x=10+3 t$ |
| :--- |
| $y=-2-t$ |
| $z=t$ |\(\quad \Rightarrow \quad \boldsymbol{r}=\left(\begin{array}{c}\mathbf{1 0}

-\mathbf{2}

\mathbf{0}\end{array}\right)+t\left($$
\begin{array}{c}\mathbf{3} \\
-\mathbf{1} \\
\mathbf{1}\end{array}
$$\right), t \in \mathbb{R}\)

Case 3: Do Not Intersect At Any Common Point Or Line

(a) All 3 Parallel

(b) 2 Of The 3 Parallel

(c) Triangular Prism

If no solution is found, lines are not parallel, do not intersect and planes form a triangular prism (Case 3c)

For more notes \& learning materials, visit:

www.overmugged.com

' A ' levels crash course program

Join our telegram channel:
@overmuggedAlevels

Professionally designed crash course to help you get a condensed revision before your ' A ' Levels! Each H 2 subject will have $\mathbf{3}$ crash course modules which will cover their entire H 2 syllabus.

The $\mathbf{4}$ hour module focuses on going through key concepts and identifying commonly tested questions!
The crash courses modules will begin in June 2021 and last till Oct 2021.

Pre-register now on our website and secure your slots!

Need help?
Shalyn Tay
(Private tutor with 4
years of experience)

82014166
(Whatsapp)
@shalyntay
(telegram username)

