

- Imaginary Number i
- Complex Numbers in Cartesian and Polar form
- Complex Conjugates
- Complex Roots of Polynomial Equations
- Argand Diagrams, Modulus and Argument
- Effect of Multiplying 2 Complexes


## CHAPTER ANALYSIS

- Practice question types, there are only a few
- Understand the chapter from an algebraic point of view
- The new syllabus does not test drawing on argand diagrams
- Appears every year, typically 1 big question, or 2 small questions
WEIGHTAGE
- Constitutes approximately 3-7\% of final grade

COMPLEX NUMBERS I

## COMPLEX NUMBERS \& IMAGINARY NUMBER i COMPLEX NUMBER OPERATIONS COMPLEX CONJUGATES COMPLEX ROOTS OF POLYNOMIAL EQUATIONS



## Imaginary Number $\boldsymbol{i}$

$$
i=\sqrt{-1}
$$

$$
i^{4 k+1}=\sqrt{-1}=i
$$

$$
i^{2}=-1
$$

$$
i^{4 k+2}=-1
$$

$$
i^{3}=-i
$$

$$
i^{4 k+3}=-i
$$

$$
i^{4}=1
$$

$$
i^{4 k}=1
$$

A complex number is of the form:

$$
\begin{gathered}
\text { Cartesian Form } \\
z=x+i y
\end{gathered}
$$

where x and y are real numbers and $i=\sqrt{-1}$
$x$ is the real part of $z, \operatorname{Re}(z)$
$x=0 \Rightarrow z=i y$ is a purely imaginary number
$y$ is the imaginary part of $z, \operatorname{Im}(z)$
Note that $\operatorname{Im}(z)$ does not include $\boldsymbol{i}$
$y=0 \Rightarrow z=x$ is a real number
The set of complex numbers is denoted by $\mathbb{C}$

## Complex Number Operations

## Equality of 2 Complex Numbers

$$
x+i y=a+i b \Leftrightarrow x=a \text { and } \mathrm{y}=\mathrm{b}
$$

## Addition of Complex Numbers

$$
(x+i y)+(a+i b)=(x+a)+i(y+b)
$$

## Subtraction of Complex Numbers

$$
(x+i y)-(a+i b)=(x-a)+i(y-b)
$$

## Multiplication of Complex Numbers

$$
\begin{aligned}
& \text { (x+iy)(a+ib) } \\
& =x a+i x b+i y a+i^{2} y b \quad \text { Let } i^{2}=-1 \\
& =x a+i x b+i y a+(-1) y b \\
& =(x a-y b)+i(x b+y a) \\
&
\end{aligned}
$$



The complex conjugate of $z=x+i y$ is denoted by $z^{*}$ and defined as:

> Cartesian Form
> $z^{*}=x-i y$
where x and y are real numbers and $i=\sqrt{-1}$
$z$ and $z^{*}$ are conjugates of each other and known as conjugate pairs
Observe that $\operatorname{Re}(\mathrm{z})=\mathrm{x}=\operatorname{Re}\left(z^{*}\right)$
While $\operatorname{Im}\left(z^{*}\right)=-y=-\operatorname{Im}(\mathrm{z})$


## Complex Conjugates

## Useful Properties:

1. $\left(z^{*}\right)^{*}=z$
2. $\mathrm{z}+\mathrm{z}^{*}=2 \operatorname{Re}(\mathrm{z})$
3. $\mathrm{z}-z^{*}=2 i \operatorname{Im}(z)$
4. $\mathrm{zz}^{*}=x^{2}+y^{2}$
5. $\mathrm{z}=z^{*} \Leftrightarrow \mathrm{z}$ is real
6. $(\mathrm{z}+w)^{*}=z^{*}+w^{*}$
7. $(\mathrm{z} w)^{*}=z^{*} w^{*}$

## ***Important Result: Complex Roots of Polynomial Equations

Non-real roots of a polynomial equation with real coefficients occur in conjugate pairs
$x^{2}-2 x+2=0$ has REAL coefficients to which $x=1 \pm i$ are conjugate pair solutions
$z^{2}+(-2+3 i) z+(5-i)=0$ has IMAGINARY coefficients therefore the solution does not contain conjugate pairs

COMPLEX NUMBERS II

## ARGAND DIAGRAMS MODULUS \& ARGUMENTS POLAR FORM OF COMPLEX NUMBERS MOD \& ARG RELATIONSHIP WITH CONJUGATES GEOMETRICAL EFFECT OF MULTIPLYING 2 COMPLEXES

Example


$$
\begin{aligned}
& |3+4 i|=\sqrt{3^{2}+4^{2}}=5 \\
& \tan \alpha=\frac{4}{3} \Rightarrow \alpha=0.927 \mathrm{rad} \\
& \arg (3+4 i)=0.927 \mathrm{rad}
\end{aligned}
$$


$|-3-4 i|=\sqrt{3^{2}+4^{2}}=5$
$\tan \alpha=\frac{4}{3} \Rightarrow \alpha=0.927 \mathrm{rad}$
$\arg (3+4 i)=-\pi+0.927 \mathrm{rad}$

## Geometrical Representation of Complex Numbers

## Argand Diagram

$r$ is the modulus of the complex number $z$, denoted by $|z|$
$|z|=r=\sqrt{x^{2}+y^{2}}$
$\theta$ is the argument of the complex number $z$, denoted by $\arg (z)$ where $-\boldsymbol{\pi}<\boldsymbol{\operatorname { a r g }} \boldsymbol{g}(\boldsymbol{z}) \leq \boldsymbol{\pi}$ and $\arg (z)$ should be given in radians

Complex Number addition and subtraction follow the vector parallelogram law of addition and subtraction

Multiplication \& Division of Complex Numbers in Polar Form

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1} e^{i \theta_{1}}}{r_{2} e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

## Other Useful Properties

1. $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
2. $\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
3. $\left|z^{n}\right|=|z|^{n}$

$$
\begin{aligned}
& \text { 1. } \quad \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\theta_{1}+\theta_{2} \\
& \text { 2. } \quad \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=\theta_{1}-\theta_{2} \\
& \text { 3. } \quad \arg \left(z^{n}\right)=n \arg (z)=n \theta_{1}
\end{aligned}
$$

## Complex Numbers Polar Form



Any complex number can be written as:

| Cartesian Form |
| :---: |
| $z=x+i y$ |

## Polar Form

$r(\cos \theta+i \sin \theta)$

# Mod \& Arg Relationship With Conjugates 



$$
\begin{gathered}
\left|z^{*}\right|=|z| \\
\arg \left(z^{*}\right)=-\arg (z)
\end{gathered}
$$

$$
z z^{*}=x^{2}+y^{2}=|z|^{2}
$$



## Multiplying 2 Complexes



$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

Scale a factor $r$ of the length $\mathrm{O}_{1}$, followed by an anti-clockwise rotation through an angle of $\boldsymbol{\theta}_{2}$ radians about 0


## Multiplying a Complex by i



When complex number $z$ is multiplied by $i$, the point represented by $z$ on the argand diagram is rotated anti-clockwise through an angle of

$$
\frac{\pi}{2} \text { radians about } 0
$$

For more notes \& learning materials, visit:

## www.overmugged.com

## 'A' levels crash course program

Join our telegram channel: @overmuggedAlevels

Professionally designed crash course to help you get a condensed revision before your ' $A$ ' Levels!

Each H 2 subject will have $\mathbf{3}$ crash course modules which will cover their entire H 2 syllabus.

The $\mathbf{4}$ hour module focuses on going through key concepts and identifying commonly tested questions!

The crash courses modules will begin in June 2021 and last till Oct 2021.
Pre-register now on our website and secure your slots!

Need help?

Shalyn Tay
(Private tutor with 4 years of experience)

82014166
(Whatsapp)
@shalyntay
(telegram username)


