CHAPTER ANALYSIS

- Conditions for 2 lines to be parallel or perpendicular
- Midpoint of line segment
- Area of rectilinear figure
[Note that E-Math Coordinate Geometry is a pre-requisite]

EXAM

WEIGHTAGE

- Relatively straight forward chapter
- 3 key concepts
- Concepts usually tested as a stand-alone topic
- Questions are repetitive, just need to follow the same algorithm to solve the same type of questions
- High overall weightage
- Tested consistently every year
- Typically, an $8-9 \mathrm{~m}$ question, 1 question in one of the papers

Parallel/Perpendicular lines

Midpoint of a line segment Area of rectilinear figure

Alternative to the equation of a straight line

There is another equation that can be used to find the equation of a straight line. This equation is more powerful (and useful) than the standard equation as it only requires 1 gradient and 1 point while its latter requires 1 gradient and 2 points minimum

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

- $\left(x_{1}, y_{1}\right)$ is the coordinate needed
- m is the gradient of the line

Take Note

This formula is actually derived from the gradient formula

$$
m=\frac{y-y_{1}}{x-x_{1}} \Rightarrow y-y_{1}=m\left(x-x_{1}\right)
$$

Equation of a straight line

Common Mistake

The coefficient of y must be 1 when reading off the gradient and y-intercept. Many students will forget about this fact and carry on the question without checking

$$
2 y=4 x+8 \quad \Rightarrow \quad y=2 x+4
$$

The gradient of the line is 2 and the y-intercept is 4 . This is because the whole equation has to be divided by 2 first as the coefficient of y must be 1

Term	Name	Definition
\boldsymbol{c}	\boldsymbol{y}-intercept	Represents the \boldsymbol{y}-value where the line cuts the \boldsymbol{y}-axis
\boldsymbol{m}	Gradient	Represents the change in the \boldsymbol{y}-value arising from a per unit change in \boldsymbol{x}

Perpendicular Lines

For 2 lines to be perpendicular, the product of their gradients is -1

$$
m_{1} \times m_{2}=-1
$$

These lines intersect each other at 90°

Parallel Lines

The condition for parallel lines is that both lines have the same gradient, but different y-intercepts

$$
m_{1}=m_{2}
$$

There are questions where students are asked to determine if there are any intersection points between 2 lines. A very easy way to check is to check the gradient and y-intercept values. There will be possible 3 cases:

- Gradient and y-intercept same
- The lines are identical, they have infinitely many intersection points
- Gradient same, y-intercept different
- The 2 lines are parallel, they have no intersection points
- Gradient and y-intercept different
- The 2 lines have no unique relationships between them, they have 1 point of intersection

Gradient of a straight line

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

\boldsymbol{m} value	Indication
$\boldsymbol{m}>\mathbf{0}$	Positive gradient, upwards sloping
$\boldsymbol{m}<\mathbf{0}$	Negative gradient, downwards sloping
$\boldsymbol{m}=\mathbf{0}$	Parallel to the \boldsymbol{x}-axis, horizontal line
\boldsymbol{m} undefined	Parallel to the \boldsymbol{y}-axis, vertical line

Take Note

Do note that from the value of the gradient, we can tell how steep a line is. The smaller the gradient value, the shallower the gradient is going to be. The greater the value, the steeper the gradient is going to be

Collinearity with 3 points

Students are not allowed to assume that if 3 points lie on the same line that the line is straight UNLESS it is explicitly stated in the question of this line is part of a standard geometric figure

To test for collinearity

All 3 line segments, $A B, B C$ and $A C$ must have the same gradient and there exist a shared common point B

배几

INT넴ㅁ
Distance between 2 points
The formula for calculating the distance between 2 points on a straight line is given as such

$$
|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Midpoint of a Line Segment

Think of calculating the average of the x and y coordinates

Perpendicular Bisectors

A line that is perpendicular to the segment and divides it into 2 congruent segments

To find the equation of the perpendicular bisector,

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Take Note
This formula is linked to Pythagoras' Theorem

$$
|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad A B=\sqrt{x^{2}+y^{2}}
$$

During the examinations, if students forget the distance formula, they can opt to draw a right-triangle and compute the length using Pythagoras' Theorem instead

- 1 point: Midpoint of the line
- 1 gradient: $\frac{-1}{\text { Gradient of line }}$

TAKE NOTE

- Do note that the first coordinate you choose is repeated. So if you have 3 vertices, your shoelace should have 4 points, 4 vertices, shoelace should have 5 points etc.
- Do note that the bars on the side of the formula represent the modulus sign.

$$
\text { Area }=\frac{1}{\frac{1}{2}}\left|\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & \ldots & x_{m} & x \\
y_{1} & y_{2} & y_{3} & \ldots & y_{m} & y
\end{array}\right|
$$

This forces anything within them to be positive. So let's say you get a negative value, these bars will cause the value to turn positive. Also note that the reason for this is that areas are strictly positive

- How to tabulate:

$$
\frac{1}{2}\left|\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \ldots & x_{m} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{m} \\
y_{1}
\end{array}\right|
$$

$$
\text { Downward arrows are }+ \text {, upward arrows are - }
$$

Hence, this evaluates to

$$
\frac{1}{2}\left|\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & \ldots & x_{m} & x_{1} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{m} & y_{1}
\end{array}\right|=\frac{1}{2}\left|\left(x_{1} y_{2}+x_{2} y_{3}+\ldots+x_{m} y_{1}\right)-\left(y_{1} x_{2}+y_{2} x_{3}+\ldots+y_{m} x_{1}\right)\right|
$$

Area of rectilinear figures

Method to use is the Shoelace method. Let $\boldsymbol{A}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right), \boldsymbol{B}\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$, $\boldsymbol{C}\left(\boldsymbol{x}_{3}, \boldsymbol{y}_{3}\right), \ldots$ and $\boldsymbol{M}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{y}_{\boldsymbol{m}}\right)$ be the vertices of a rectilinear figure and the points are arranged in an anti-clockwise direction

$$
\text { Area }=\frac{1}{2}\left|\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & \ldots & x_{m} & x_{1} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{m} & y_{1}
\end{array}\right|
$$

To be very honest, the direction of how the points are arranged does not really matter [due to the modulus signs], but the ordering does. Always ensure that you follow one specific direction when calculating

Take Note

Always remember to repeat the very first point that you choose

$$
\text { Area }=\frac{1}{2} \left\lvert\, \begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \ldots & x_{m} \\
y_{1} & y_{2} & y_{3} & \ldots & y_{m}
\end{array} x_{1}\right.
$$

About Us

OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on $\underline{\underline{G}}$ and join our Telegram channel to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Kaiwen's group tuition, contact him at: Whatsapp: 97216433
Telegram: @ongkw28
Website: https://www.overmugged.com/kai-wen

For more free notes \& learning materials, visit: www.overmugged.com

OVERMUGGED's Curated Notes

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a highly condensed booklet that covers all content within the MOE syllabus.

This booklet consist of key concept breakdowns, worked examples and exam tips/ techniques to required to ace your exams.

Get an upgraded version of the free notes and supercharge your revision!

Purchase here.

Crash
 courses

Check out our upcoming crash courses at:
https://www.overmugged.com/crashcourses

'O' Levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- A-Math
- English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)

