DARRELL ER (COPYRIGHTED) ©

DARRELL ER (COPYRIGHTED) ©

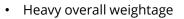
1

randon]

# TOPIC 10.2: ALKANES






Key topic

٠

# CHAPTER ANALYSIS



- Alkanes are tested lightly
- Explanation for physical properties is applicable to all other hydrocarbon compounds as well\*



• Entire Organic Chemistry portion accounts for 15-20% of each year's Chemistry paper

WEIGHTAGE

#### KEY CONCEPT

## ALKANES HOMOLOGOUS SERIES FUNCTIONAL GROUP GENERAL FORMULA



| Name    | Carbon<br>atoms | Molecular<br>Formula           | Full Structural Formula                       | Condensed<br>structural<br>formula                              |
|---------|-----------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------------------|
|         |                 |                                | Н<br> <br> <br> <br> <br> <br> <br>           |                                                                 |
| Methane | 1               | $CH_4$                         | H                                             | CH <sub>4</sub>                                                 |
| Ethane  | 2               | $C_2H_6$                       | Н Н<br>     <br>H – С – Н<br>     <br>H Н     | CH <sub>3</sub> CH <sub>3</sub>                                 |
| Propane | 3               | C <sub>3</sub> H <sub>8</sub>  | H H H<br>     <br>H-C-C-C-H<br>     <br>H H H | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                 |
| Butane  | 4               | C <sub>4</sub> H <sub>10</sub> | H H H H<br>       <br>H—Ç—Ç—Ç—C—H             | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> |

### <u>Alkanes</u>

Alkanes are hydrocarbons with the general formula  $C_nH_{2n+2}$ .

Alkanes contain only C-C single bonds and C-H single bonds .

Alkanes are **'saturated**' as each carbon atom is covalently bonded to a maximum of four other atoms.

### **Functional group**

Alkanes have **no functional group**.

(Take note that C-C single bond is not a functional group as it does not have any chemical properties!)

### KEY CONCEPT

## ALKANES PHYSICAL PROPERTIES CHEMICAL PROPERTIES ISOMERISM



# **PHYSICAL PROPERTIES**

| Physical property          | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Melting and boiling points | <ul> <li>As the number of carbon atoms in the alkane increases, the melting and boiling points of alkanes increases as well.</li> <li>When the number of carbon atoms in an alkane increases, the molecules are bigger and have stronger intermolecular forces of attraction between the alkane molecules. As such, more heat energy is needed to overcome the intermolecular forces of attraction between the alkane molecules. Hence, larger alkanes containing more carbon atoms will have higher melting and boiling points.</li> </ul> |  |  |
| Volatility                 | <ul> <li>When the number of carbon atoms in an alkane increases, the alkane becomes less volatile it is. (similar to m.p b.p.)</li> <li>With a higher relative molecular mass, there would be stronger intermolecular forces of attraction between the alkane molecules. As such, more energy is needed to overcome the intermolecular forces of attraction between the alkane molecules.</li> <li>Hence, larger alkane molecules are less likely to evaporate.</li> </ul>                                                                  |  |  |
| Density                    | When the <b>number of carbon atoms in an alkane increases, the density will increase</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Viscosity                  | When the <b>number of carbon atoms in an alkane increases, the viscosity will increase. (more difficult to flow)</b><br>Alkanes with longer hydrocarbon chains flow less smoothly as they tend to get stuck together.                                                                                                                                                                                                                                                                                                                       |  |  |
| Flammability               | The <b>higher the relative molecular mass of an alkane, the lower the flammability</b> . (more difficult to burn)<br>The larger alkanes contain a <b>higher percentage by mass of carbon atoms</b> and undergo incomplete combustion to<br>produce a smokier flame.                                                                                                                                                                                                                                                                         |  |  |
| Solubility                 | Alkanes are <b>insoluble in water but are soluble in organic solvents</b> like ethanol.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |



# **CHEMICAL REACTIONS**





### **COMBUSTION**

### **SUBSTITUTION** (Free Radical Substitution)

During substitution, alkanes can react with halogens In the presence of **ultraviolet (UV) light**.

For example,

 $CH_4(g) + Br_2(g) \rightarrow CH_3Br(g) + HBr(g)$ 

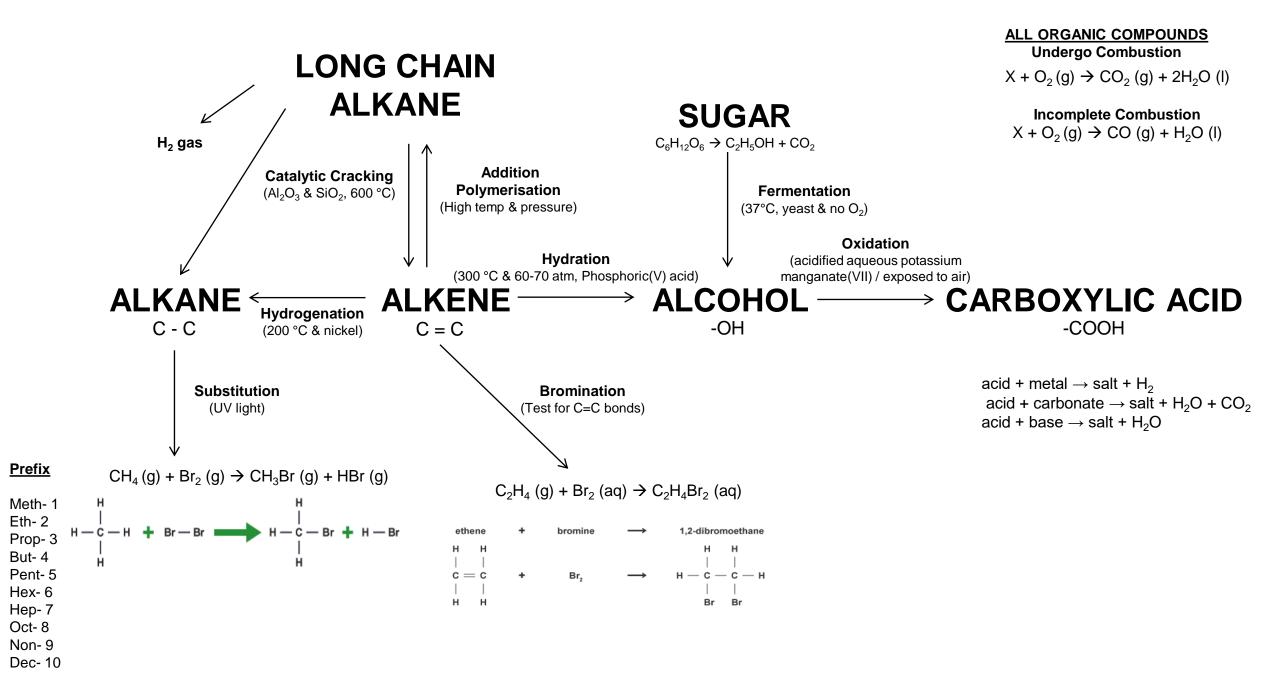
It is also possible for Br atoms to replace all the H atoms to become CBr<sub>4.</sub>

### **COMBUSTION**

During complete combustion, an alkane burns in excess oxygen to produce **carbon dioxide and water**.

For instance, methane undergoes complete combustion in excess oxygen:

 $2 C_2 H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2 O(I)$ 


Incomplete combustion of the alkane occurs when there is an insufficient oxygen.

In this case, **water and carbon monoxide** are produced.

 $2 C_2 H_6(g) + 5 O_2(g) \rightarrow 4 CO(g) + 6 H_2O(I)$ 

If there is even lesser amounts of oxygen, there could only be just **carbon (soot) and water** that are produced.

7



Join our telegram

(Private tutor with **7** 

**years** of experience)

(telegram username)

@overmugged

Need help?

DARRELL

8777 0921

(Whatsapp)

**@Darreller** 

channel:

### 

# 'O' levels crash course program

**Professionally designed crash course** to help you get a **condensed revision** before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!** 

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in July 2021 and last till Oct 2021.

Register now on our <u>website</u> and secure your slots!

I

OVERMUGGED

# FREE NOTES | CRASH COURSES | 'O' LEVELS | 'A' LEVELS WWW.OVERMUGGED.COM