May Practice Questions 2022 Full Solutions (A-Math)

Copyright

All materials prepared in this Practice Questions set are prepared by the original tutor (Kaiwen). All rights reserved. No part of any materials provided may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without prior written permission of the tutor

Question Source

All questions are sourced and selected based on the known abilities of students sitting for the 'O' Level A-Math Examination. All questions compiled here are from 2018-2021 School Mid-Year / Prelim Papers. Questions are categorised into the various topics and range in varying difficulties. If questions are sourced from respective sources, credit will be given when appropriate.

How to read:
[S4 ABCSS P1/2011 PRELIM Qn 1]
Secondary 4, ABC Secondary School, Paper 1, 2011, Prelim, Question 1

Syllabus (4049)

Algebra	Geometry and Trigonometry	Calculus
Quadratic Equations \& Inequalities	Trigonometry	Differentiation
Surds	Coordinate Geometry	Integration
Polynomials	Further Coordinate Geometry	Kinematics
Simultaneous Equations	Linear Law	
Partial Fractions	Proofs of Plane Geometry	
Binomial Theorem		
Exponential \& Logarithms		

Contents
1 Quadratic Equations \& Inequalities 3
1.1 Full Solutions 3
2 (Indices) and Surds 7
2.1 Full Solutions 7
3 Polynomials 9
3.1 Full Solutions 9
4 Partial Fractions 13
4.1 Full Solutions 13
5 Binomial Theorem 17
5.1 Full Solutions 17
6 Exponential \& Logarithms 20
6.1 Full Solutions 20
7 Trigonometry 26
7.1 Full Solutions 26
8 Coordinate Geometry 34
8.1 Full Solutions 34
9 Further Coordinate Geometry 38
9.1 Full Solutions 38
10 Linear Law 42
10.1 Full Solutions 42
11 Proofs of Plane Geometry 45
11.1 Full Solutions 45
12 Differentiation 48
12.1 Full Solutions 48
13 Integration 54
13.1 Full Solutions 54
14 Differentiation \& Integration 59
14.1 Full Solutions 59
15 Kinematics 62
15.1 Full Solutions 62

1 Quadratic Equations \& Inequalities

1.1 Full Solutions

1. (a)

$$
\begin{aligned}
3^{2 x+1} & =6\left(3^{x-1}\right)-p \\
3\left(3^{2 x}\right)-2\left(3^{x}\right)+p & =0
\end{aligned}
$$

Let $a=3^{x}$,

$$
3 a^{2}-2 a+p=0
$$

$$
\begin{aligned}
\text { Discriminant } & =(-2)^{2}-4(3)(p) \\
& =4-12 p
\end{aligned}
$$

Given that $p>\frac{1}{3}$,

$$
\begin{aligned}
-12 p & <-4 \\
4-12 p & <0
\end{aligned}
$$

Since the discriminant is less than 0 , the equation has no real solutions
(b)

$$
\begin{gather*}
y=2 x-\frac{a^{2}}{2} \ldots \tag{1}\\
y=x^{2}-a x-4 \tag{2}
\end{gather*}
$$

Let Equation (1) = Equation (2),

$$
\begin{aligned}
x^{2}-a x-4 & =2 x-\frac{a^{2}}{2} \\
x^{2}+(-a-2) x+\left(\frac{a^{2}}{2}-4\right) & =0
\end{aligned}
$$

Since the line intersect the curve at 2 distinct points, $b^{2}-4 a c>0$

$$
\begin{aligned}
(-a-2)^{2}-4(1)\left(\frac{a^{2}}{2}-4\right) & >0 \\
-a^{2}+4 a+20 & >0 \\
a^{2}-4 a-20 & <0
\end{aligned}
$$

Solving for a,

$$
\begin{aligned}
a & =\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(-20)}}{2(1)} \\
& =\frac{4 \pm \sqrt{96}}{2} \\
& =2 \pm 2 \sqrt{6} \\
& \therefore \mathbf{2}-\mathbf{2} \sqrt{\mathbf{6}}<\boldsymbol{a}<\mathbf{2}+\mathbf{2} \sqrt{\mathbf{6}}
\end{aligned}
$$

2. (a)

$$
y=p x^{2}-4 x+p
$$

Since the curve lies entirely above the x-axis, $b^{2}-4 a c<0$

$$
\begin{aligned}
&(-4)^{2}-4(p)(p)<0 \\
& 4 p^{2}>16 \\
& p^{2}>4 \\
& p<-2 \quad \text { or } \quad p>2
\end{aligned}
$$

Since the curve lies entirely above the x-axis, $p>0$

$$
\therefore p>2
$$

(b)

$$
\begin{gather*}
y=x+2 k \tag{1}\\
2 y^{2}-x^{2}=8 \tag{2}
\end{gather*}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
2(x+2 k)^{2}-x^{2}-8 & =0 \\
2\left(x^{2}+4 k x+4 k^{2}\right)-x^{2}-8 & =0 \\
2 x^{2}+8 k x+8 k^{2}-x^{2}-8 & =0 \\
x^{2}+8 k x+\left(8 k^{2}-8\right) & =0
\end{aligned}
$$

To prove that the line will intersect the curve at 2 distinct points, WTS: $b^{2}-4 a c>0$

$$
\begin{aligned}
b^{2}-4 a c & =(8 k)^{2}-4(1)\left(8 k^{2}-8\right) \\
& =32 k^{2}+32 \\
& =32\left(k^{2}+1\right)
\end{aligned}
$$

Since for all real values of k,

$$
\begin{aligned}
k^{2} & \geq 0 \\
k^{2}+1 & >0 \\
32\left(k^{2}+1\right) & >0
\end{aligned}
$$

Since the discriminant is always positive for all real values of k, the line will intersect the curve at 2 distinct points
3. (a)

$$
\begin{aligned}
x^{2}-x+1 & =\left(x-\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1 \\
& =\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}
\end{aligned}
$$

(b) To show that the curve will cut the curve at 2 distinct points, WTS: $b^{2}-4 a c>0$

$$
\begin{aligned}
b^{2}-4 a c & =(-2 p)^{2}-4(1)(p-1) \\
& =4 p^{2}-4 p+4 \\
& =4\left(p^{2}-p+1\right)
\end{aligned}
$$

From part (a),

$$
\begin{aligned}
b^{2}-4 a c & =4\left[\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}\right] \\
& =4\left(x-\frac{1}{2}\right)^{2}+3
\end{aligned}
$$

Since for all real values of p,

$$
\begin{array}{r}
\left(x-\frac{1}{2}\right)^{2} \geq 0 \\
4\left(x-\frac{1}{2}\right)^{2} \geq 0 \\
4\left(x-\frac{1}{2}\right)^{2}+3>0
\end{array}
$$

Since the discriminant is always positive for all real values of p, the curve will cut the x-axis at 2 distinct points
4. (a)

$$
-\frac{4}{3 x^{2}+14 x-5}<0
$$

Since the fraction is always negative,

$$
\begin{array}{r}
3 x^{2}+14 x-5>0 \\
(3 x-1)(x+5)>0
\end{array}
$$

$$
x<-5 \quad \text { and } \quad x>\frac{1}{3}
$$

(b)

$$
\begin{gather*}
x+y=c . \tag{1}\\
y^{2}=2 x+3 \tag{2}
\end{gather*}
$$

From part (1),

$$
\begin{equation*}
y=c-x \tag{3}
\end{equation*}
$$

Substitute Equation (3) into Equation (2),

$$
\begin{aligned}
(c-x)^{2} & =2 x+3 \\
x^{2}+(-2 c-2) x+\left(c^{2}-3\right) & =0
\end{aligned}
$$

Since the curve intersect the line at 2 distinct points,

$$
\begin{gathered}
(-2 c-2)^{2}-4(1)\left(c^{2}-3\right)>0 \\
4 c^{2}+8 c+4-4 c^{2}+12>0 \\
8 c+16>0 \\
\boldsymbol{c}>-\mathbf{2}
\end{gathered}
$$

2 (Indices) and Surds

2.1 Full Solutions

1. (a)

$$
\begin{aligned}
3^{n+2}-3^{n} & =\frac{5^{n+1}}{25^{n}} \\
9\left(3^{n}\right)-3^{n} & =5^{n+1-2 n} \\
8\left(3^{n}\right) & =\frac{5}{5^{n}} \\
\therefore 15^{n} & =\frac{\mathbf{5}}{\mathbf{8}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x \sqrt{80}=\sqrt{20}-x \sqrt{48} \\
& x(\sqrt{80}+\sqrt{48})=\sqrt{20} \\
& \therefore x=\frac{\sqrt{20}}{\sqrt{80}+\sqrt{48}} \\
&=\frac{2 \sqrt{5}}{4 \sqrt{5}+4 \sqrt{3}} \times \frac{4 \sqrt{5}-4 \sqrt{3}}{4 \sqrt{5}-4 \sqrt{3}} \\
&=\frac{40-8 \sqrt{15}}{32} \\
& \quad \frac{\mathbf{5}-\sqrt{\mathbf{1 5}}}{\mathbf{4}}
\end{aligned}
$$

2.

$$
\begin{aligned}
& \text { Volume of prism }=\frac{1}{2}(4-\sqrt{5})^{2}(2)(h) \\
& \qquad \begin{aligned}
(50 \sqrt{5}-101)=h(21-8 \sqrt{5})
\end{aligned} \\
& \begin{aligned}
\therefore h & =\frac{50 \sqrt{5}-101}{21-8 \sqrt{5}} \times \frac{21+8 \sqrt{5}}{21+8 \sqrt{5}} \\
& =\frac{1050 \sqrt{5}+2000-2121-808 \sqrt{5}}{121} \\
& =\frac{242 \sqrt{5}-121}{121} \\
& =(2 \sqrt{5}-1) \mathrm{cm}
\end{aligned}
\end{aligned}
$$

3.

Curved surface area of cone $=\pi r l$

$$
\begin{aligned}
\pi(5+2 \sqrt{3}) l & =(51-3 \sqrt{3}) \pi \\
l & =\frac{51-3 \sqrt{3}}{5+2 \sqrt{3}} \times \frac{5-2 \sqrt{3}}{5-2 \sqrt{3}} \\
& =\frac{255-102 \sqrt{3}-15 \sqrt{3}+18}{25-4(3)} \\
& =\frac{273-117 \sqrt{3}}{13} \\
& =(\mathbf{2 1 - 9 \sqrt { 3 }}) \mathbf{c m}
\end{aligned}
$$

4.

$$
\begin{aligned}
& \text { LHS }=\frac{\sqrt{7}-\sqrt{6}}{\sqrt{21}+\sqrt{2}} \\
&=\frac{\sqrt{7}-(\sqrt{2})(\sqrt{3})}{(\sqrt{3})(\sqrt{7})+\sqrt{2}} \times \frac{(\sqrt{3})(\sqrt{7})-\sqrt{2}}{(\sqrt{3})(\sqrt{7})-\sqrt{2}} \\
&=\frac{7 \sqrt{3}-(\sqrt{2})(\sqrt{7})-3(\sqrt{2})(\sqrt{7})+2 \sqrt{3}}{19} \\
&= \frac{9}{19} \sqrt{3}-\frac{4}{19} \sqrt{14} \\
& \quad \therefore a=\frac{\mathbf{9}}{\mathbf{1 9}} \quad b=-\frac{\mathbf{4}}{\mathbf{1 9}}
\end{aligned}
$$

3 Polynomials

3.1 Full Solutions

1. (a) Let $x=-1$,

$$
\begin{aligned}
f(-1) & =9(-1)^{3}-6(-1)^{2}-11(-1)+4 \\
& =0 \\
& \therefore(x+1) \text { is a factor of } f(x)
\end{aligned}
$$

Let $x=\frac{4}{3}$,

$$
\begin{aligned}
f\left(\frac{4}{3}\right) & =9\left(\frac{4}{3}\right)^{3}-6\left(\frac{4}{3}\right)^{2}-11\left(\frac{4}{3}\right)+4 \\
& =0
\end{aligned}
$$

$\therefore(3 x-4)$ is a factor of $f(x)$
Let $x=\frac{1}{3}$,

$$
\begin{aligned}
f\left(\frac{1}{3}\right) & =9\left(\frac{1}{3}\right)^{3}-6\left(\frac{1}{3}\right)^{2}-11\left(\frac{1}{3}\right)+4 \\
& =0 \\
& \therefore(3 x-1) \text { is a factor of } f(x)
\end{aligned}
$$

$$
\therefore f(x)=(x+1)(3 x-4)(3 x-1)
$$

(b) Diagram

(c)

$$
-1 \leq x \leq \frac{1}{3}, \quad x \geq \frac{4}{3}
$$

2. (a) Let a be an arbitrary constant

$$
\begin{gathered}
F(x)=a(x+1)(x-2)(x-5) \\
\therefore F(3)=3 \\
\therefore a(3+1)(3-2)(3-5)=30 \\
a=-\frac{15}{4} \\
\therefore F(x)=-\frac{15}{4}(x+1)(x-2)(x-5)
\end{gathered}
$$

When divided by $(x+3)$,

$$
\begin{aligned}
F(-3) & =-\frac{15}{4}(-3+1)(-3-2)(-3-5) \\
& =\mathbf{3 0 0}
\end{aligned}
$$

(b)

$$
\begin{gathered}
F(\sqrt{m})=0 \\
\left.-\frac{15}{4}(\sqrt{m}+1)(\sqrt{m}-2]\right)(\sqrt{m}-5)=0 \\
\sqrt{m}=-1 \text { (N.A.) } \quad \text { or } \quad \sqrt{m}=2 \quad \text { or } \quad \sqrt{m}=5 \\
\therefore m=\mathbf{4} \quad \text { or } \quad m=\mathbf{2 5}
\end{gathered}
$$

3. (a) For $x^{2}-3 x-1=0$,

$$
\begin{aligned}
b^{2}-4 a c & =(-3)^{2}-4(1)(-1) \\
& =13>0
\end{aligned}
$$

Since the discriminant of the factor is positive, there are 2 real roots
Hence, $f(x)=0$ has 4 real solutions
(b)

$$
\begin{aligned}
f(x) & =3(x+2)(x-3)\left(x^{2}-3 x-1\right) \\
& =3\left(x^{2}-x-6\right)\left(x^{2}-3 x-1\right) \\
& =\mathbf{3} \boldsymbol{x}^{4}-\mathbf{1 2} \boldsymbol{x}^{\mathbf{3}}-\mathbf{1 2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{5 7} \boldsymbol{x}+\mathbf{1 8}
\end{aligned}
$$

(c) When divided by $(2 x+1)$,

$$
\begin{aligned}
\text { Remainder } & =3\left(-\frac{1}{2}\right)^{4}-12\left(-\frac{1}{2}\right)^{3}-12\left(-\frac{1}{2}\right)^{2}+57\left(-\frac{1}{2}\right)+18 \\
& =\mathbf{1 1} \frac{\mathbf{1 3}}{\mathbf{1 6}}
\end{aligned}
$$

4. (a) Let

$$
f(x)=2 x^{3}-3 x^{2}-3 x+4
$$

Let $x=1$,

$$
\begin{aligned}
f(1) & =2(1)^{3}-3(1)^{2}-3(1)+4 \\
& =0
\end{aligned}
$$

$$
\therefore(x-1) \text { is a factor of } f(x)
$$

Let b be an arbitrary constant,

$$
2 x^{3}-3 x^{2}-3 x+4=(x-1)\left(2 x^{2}+b x-4\right)
$$

Comparing the coefficient of x,

$$
\begin{gathered}
\begin{array}{c}
-3 \\
b
\end{array}=-4-b \\
\therefore f(x)=(x-1)\left(2 x^{2}-x-4\right) \\
\\
\quad(x-1)\left(2 x^{2}-x-4\right)=0 \\
x=1 \quad \text { or } \quad x=\frac{1 \pm \sqrt{33}}{4} \\
\therefore x=\mathbf{1} \quad \text { or } \quad x=\mathbf{1 . 6 9}(\mathbf{3 . s . f .)} \quad \text { or } \quad x=-\mathbf{1 . 1 9} \text { (3.s.f.) }
\end{gathered}
$$

(b) By the Factor Theorem,

$$
\begin{aligned}
p(5)+1 & =0 \\
p(5) & =-1
\end{aligned}
$$

By the Remainder Theorem,

$$
\begin{aligned}
g(5) & =2(5)^{3}-p(5)+5 \\
& =\mathbf{2 5 6}
\end{aligned}
$$

5. (a)

$$
\begin{gathered}
x^{2}-4=(x+2)(x-2) \\
P(2)=0 \\
2(2)^{4}+p\left[(2)^{3}+(2)^{2}\right]+q[3(2)-5]=0 \\
q=-32-12 p \ldots . .(1)
\end{gathered}
$$

$$
\begin{gathered}
P(-2)=0 \\
2(-2)^{4}+p\left[(-2)^{3}+(-2)^{2}\right]+q[3(-2)-5]=0 \\
-4 p-11 q=-32 \ldots \ldots .(2)
\end{gathered}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
-4 p-11(-32-12 p) & =-32 \\
-4 p+352+132 p & =-32 \\
p & =-3
\end{aligned}
$$

Substitute $p=-3$ into Equation (1),

$$
\begin{aligned}
q & =-32-12(-3) \\
& =4 \\
p & =-\mathbf{3} \quad q=\mathbf{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& P(x)=2 x^{4}-3 x^{3}-3 x^{2}+12 x-20 \\
& P\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)^{4}-3\left(-\frac{1}{2}\right)^{3}-3\left(-\frac{1}{2}\right)^{2}+12\left(-\frac{1}{2}\right)-20 \\
&=-\mathbf{2 6} \frac{\mathbf{1}}{\mathbf{4}}
\end{aligned}
$$

(c) Let b be an arbitrary constant

$$
2 x^{4}-3 x^{3}-3 x^{2}+12 x-20=\left(x^{2}-4\right)\left(2 x^{2}+b x+5\right)
$$

Comparing the coefficient of x,

$$
\begin{gathered}
-4 b=12 \\
b=-3 \\
\therefore P(x)=\left(x^{2}-4\right)\left(2 x^{2}-3 x+5\right) \\
x^{2}=4 \quad \text { or } \quad 2 x^{2}-3 x+5=0
\end{gathered}
$$

For $2 x^{2}-3 x+5=0$,

$$
\begin{aligned}
\text { Discriminant } & =(-3)^{2}-4(2)(5) \\
& =-31<0
\end{aligned}
$$

\therefore There are no real roots for $2 x^{2}-3 x+5=0$

$\therefore 2$ solutions

4 Partial Fractions

4.1 Full Solutions

1. (a) By Long Division,

$$
\begin{aligned}
& \frac{4 x^{3}+5 x^{2}+x-1}{x^{2}(x+1)}=4+\frac{x^{2}+x-1}{x^{2}(x+1)} \\
& \frac{x^{2}+x-1}{x^{2}(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} \\
& x^{2}+x-1=A x(x+1)+B(x+1)+C x^{2}
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
(0)^{2}+(0)-1 & =A(0)(0+1)+B(0+1)+C(0)^{2} \\
B & =-1
\end{aligned}
$$

Let $x=-1$,

$$
\begin{aligned}
(-1)^{2}+(-1)-1 & =A(-1)(-1+1)+B(-1+1)+C(-1)^{2} \\
C & =-1
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
&(1)^{2}+(1)-1=A(1)(1+1)-(1+1)-1(1)^{2} \\
& A=2 \\
& \therefore \frac{4 x^{3}+5 x^{2}+x-1}{x^{2}(x+1)}=\mathbf{4}+\frac{\mathbf{2}}{\boldsymbol{x}}-\frac{\mathbf{1}}{\boldsymbol{x}^{\mathbf{2}}}-\frac{\mathbf{1}}{\boldsymbol{x}+\mathbf{1}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{4 x^{3}+5 x^{2}+x-1}{x^{2}(x+1)} d x & =\int 4+\frac{2}{x}-\frac{1}{x^{2}}-\frac{1}{x+1} d x \\
& =\mathbf{4} \boldsymbol{x}+\mathbf{2} \ln \boldsymbol{x}+\frac{\mathbf{1}}{\boldsymbol{x}}-\ln (\boldsymbol{x}+\mathbf{1})+\boldsymbol{c}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\frac{5 x^{2}+4 x-3}{x^{2}(2 x-1)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{2 x-1} \\
5 x^{2}+4 x-3 & =A x(2 x-1)+B(2 x-1)+C x^{2}
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
5(0)^{2}+4(0)^{2}-3 & =A(0)(2(0)-1)+B(2(0)-1)+C(0)^{2} \\
B & =3
\end{aligned}
$$

Let $x=\frac{1}{2}$,

$$
\begin{aligned}
5\left(\frac{1}{2}\right)^{2}+4\left(\frac{1}{2}\right)-3 & =A\left(\frac{1}{2}\right)\left[2\left(\frac{1}{2}\right)-1\right]+B\left[2\left(\frac{1}{2}\right)-1\right]+C\left(\frac{1}{2}\right)^{2} \\
C & =1
\end{aligned}
$$

Let $x=1$,

$$
\begin{gathered}
5(1)^{2}+4(1)^{2}-3=A(1)\left(2(01-1)+3(2(1)-1)+(1)^{2}\right. \\
A=2 \\
\therefore \frac{5 x^{2}+4 x-3}{x^{2}(2 x-1)}=\frac{\mathbf{2}}{\boldsymbol{x}}+\frac{\mathbf{3}}{\boldsymbol{x}^{\mathbf{2}}}+\frac{\mathbf{1}}{\mathbf{2 x - \mathbf { 1 }}}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\int_{1}^{5} \frac{5 x^{2}+4 x-3}{x^{2}(2 x-1)} d x & =\int_{1}^{5} \frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{2 x-1} d x \\
& =\left[2 \ln x-\frac{3}{x}+\frac{1}{2} \ln (2 x-1)\right]_{1}^{5} \\
& =\left[2 \ln 5-\frac{3}{5}+\frac{1}{2} \ln (2(5)-1)\right]-\left[2 \ln 1-\frac{3}{1}+\frac{1}{2}(2(1)-1)\right] \\
& =2 \ln 5-\frac{3}{5}+\frac{1}{2} \ln 9+3 \\
& =\frac{12}{5}+\ln 25+\ln 3 \\
& =\frac{12}{5}+\ln 75(\text { shown })
\end{aligned}
$$

3. (a) Let

$$
f(x)=2 x^{3}-13 x^{2}+24 x-9
$$

Let $x=3$,

$$
\begin{aligned}
f(3) & =2(3)^{3}-13(3)^{2}+24(3)-9 \\
& =0
\end{aligned}
$$

$$
\therefore(x-3) \text { is a factor of } f(x)
$$

(b) Let b be an arbitrary constant

$$
2 x^{3}-13 x^{2}+24 x-9=(x-3)\left(2 x^{2}+b x+3\right)
$$

Comparing the coefficient of x,

$$
\begin{aligned}
24 & =-3 b+3 \\
b & =-7
\end{aligned}
$$

$$
f(x)=(x-3)\left(2 x^{2}-7 x+3\right)
$$

$$
=(x-3)(2 x-1)(x-3)
$$

$$
=(2 x-1)(x-3)^{2}
$$

$$
\begin{aligned}
\frac{5 x^{2}-30 x+10}{(2 x-1)(x-3)^{2}} & =\frac{A}{2 x-1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}} \\
5 x^{2}-30 x+10 & =A(x-3)^{2}+B(x-3)(2 x-1)+C(2 x-1)
\end{aligned}
$$

Let $x=3$,

$$
\begin{aligned}
5(3)^{2}-30(3)+10 & =A(3-3)^{2}+B(3-3)(2(3)-1)+C(2(3)-1) \\
C & =-7
\end{aligned}
$$

Let $x=\frac{1}{2}$,

$$
\begin{aligned}
5\left(\frac{1}{2}\right)^{2}-30\left(\frac{1}{2}\right)+10 & =A\left[\left(\frac{1}{2}\right)-3\right]^{2}+B\left[\left(\frac{1}{2}\right)-3\right] \cdot\left[2\left(\frac{1}{2}\right)-1\right]+C\left[2\left(\frac{1}{2}\right)-1\right] \\
A & =-\frac{3}{5}
\end{aligned}
$$

Let $x=0$,

$$
\begin{gathered}
5(0)^{2}-30(0)+10=-\frac{3}{5}(0-3)^{2}+B(0-3)(2(0)-1)-7(2(0)-1) \\
B=\frac{14}{5} \\
\therefore \frac{5 x^{2}-30 x+10}{(2 x-1)(x-3)^{2}}=-\frac{\mathbf{3}}{\mathbf{5 (2 x - 1})}+\frac{\mathbf{1 4}}{\mathbf{5 (x - 3)}}-\frac{\mathbf{7}}{(\boldsymbol{x}-\mathbf{3})^{\mathbf{2}}}
\end{gathered}
$$

(c)

$$
\begin{aligned}
\int \frac{10 x^{2}-60 x+20}{2 x^{3}-13 x^{2}+24 x-9} d x & =2 \int \frac{5 x^{2}-30 x+10}{(2 x-1)(x-3)^{2}} d x \\
& =2 \int-\frac{3}{5(2 x-1)}+\frac{14}{5(x-3)}-\frac{7}{(x-3)^{2}}+d x \\
& =2\left[-\frac{3}{5(2)} \ln (2 x-1)+\frac{14}{5} \ln (x-3)-\frac{7}{(-1)(x-3)}+c\right] \\
& =-\frac{\mathbf{3}}{\mathbf{5}} \ln (\mathbf{2} \boldsymbol{x}-\mathbf{1})+\frac{\mathbf{2 8}}{\mathbf{5}} \ln (\boldsymbol{x}-\mathbf{3})+\frac{\mathbf{1 4}}{(\boldsymbol{x}-\mathbf{3})}+\boldsymbol{c}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
x^{3}+8 & =x^{3}+2^{2} \\
& =(\boldsymbol{x}+\mathbf{2})\left(\boldsymbol{x}^{2}-\mathbf{2} \boldsymbol{x}+\mathbf{4}\right)
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3}(\text { Base Area })(\text { Height }) \\
\frac{1}{3}\left(x^{3}+8\right)(\text { Height }) & =x^{3}+\frac{1}{3} x^{2}+\frac{14}{3} x+4 \\
\text { Height } & =\frac{3 x^{3}+x^{2}+14 x+12}{x^{3}+8}
\end{aligned}
$$

By long division,

$$
h=3+\frac{x^{2}+14 x-12}{x^{3}+8}
$$

(ii)

$$
\begin{aligned}
\frac{x^{2}+14 x-12}{(x+2)\left(x^{2}-2 x+4\right)} & =\frac{D}{x+2}+\frac{E x+G}{x^{2}-2 x+4} \\
x^{2}+14 x-12 & =D\left(x^{2}-2 x+4\right)+(E x+G)(x+2)
\end{aligned}
$$

Let $x=-2$,

$$
\begin{aligned}
(-2)^{2}+14(-2)-12 & =D\left[(-2)^{2}-(-2)^{2}+4\right]+[E(-2)+G] \cdot[(-2)+2] \\
-36 & =12 D \\
D & =-3
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
(0)^{2}+14(0)-12 & =(-3)\left[(0)^{2}-(0)^{2}+4\right]+[E(0)+G] \cdot[(0)+2] \\
-12 & =4(-3)+2 G \\
G & =0
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
(1)^{2}+14(1)-12 & =(-3)\left[(1)^{2}-(1)^{2}+4\right]+[E(1)+0] \cdot[(1)+2] \\
3 & =-9+3 E \\
E & =4 \\
\therefore h & =\mathbf{3}-\frac{\mathbf{3}}{\boldsymbol{x}-\mathbf{2}}+\frac{\mathbf{4} \boldsymbol{x}}{\boldsymbol{x}^{\mathbf{2}}-\mathbf{2} \boldsymbol{x}+\mathbf{4}}
\end{aligned}
$$

5 Binomial Theorem

5.1 Full Solutions

1. (a)

$$
\begin{aligned}
\left(x^{5}+\frac{2}{x^{6}}\right)^{n} & =\left(x^{5}\right)^{n}+\binom{n}{1}\left(x^{5}\right)^{n-1}\left(\frac{2}{x^{6}}\right)+\binom{n}{2}\left(x^{5}\right)^{n-2}\left(\frac{2}{x^{6}}\right)^{2}+\ldots \\
& =x^{5 n}+n\left(x^{5 n-5}\right)\left(2 x^{-6}\right)+\frac{n(n-1)}{2}\left(x^{5 n-10}\right)\left(4 x^{-12}\right) \\
& =\boldsymbol{x}^{\mathbf{5 n}}+\mathbf{2} \boldsymbol{n} \boldsymbol{x}^{\mathbf{5 n - 1 1}}+\mathbf{2 n}(\boldsymbol{n}-\mathbf{1}) \boldsymbol{x}^{\mathbf{5 n - 2 2}}+\ldots
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{2 n(n-1)}{2 n} & =8 \\
n & =9(\text { shown })
\end{aligned}
$$

(c)

$$
\begin{aligned}
T_{n+1} & =\binom{9}{r}\left(x^{5}\right)^{9-r}\left(\frac{2}{x^{6}}\right)^{r} \\
& =\binom{9}{r}(2)^{r}\left(x^{45-11 r}\right)
\end{aligned}
$$

For the constant term, x^{0}

$$
\begin{aligned}
45-11 r & =0 \\
r & =\frac{45}{11} \notin \mathbb{Z}^{+} \quad \Rightarrow \Leftarrow
\end{aligned}
$$

\therefore There is no constant term (shown)
2. (a)

$$
\begin{aligned}
T_{r+1} & =\binom{8}{r}\left(\frac{a^{2}}{\sqrt{x}}\right)^{8-r}\left(-\frac{\sqrt{x}}{a}\right)^{r} \\
& =\binom{8}{r}(-1)^{r} a^{16-3 r} x^{r-4}
\end{aligned}
$$

For the independent term, x^{0}

$$
\begin{aligned}
r-4 & =0 \\
r & =4
\end{aligned}
$$

$$
\text { Term independent of } x=\binom{8}{4} a^{16-3(4)}(-1)^{4}
$$

$$
=70 a^{4}
$$

(b)

$$
\left(\frac{3 x^{4}-4 x^{2}}{x^{2}}\right)\left(\frac{a^{2}}{\sqrt{x}}-\frac{\sqrt{x}}{a}\right)^{8}=\left(3 x^{2}-4\right)\left(\ldots+x^{2} \text { term }+ \text { independent term }+\ldots\right)
$$

For the x^{2} term,

$$
\begin{aligned}
& r-4=2 \\
& r=6 \\
& \text { Term in } x^{2}=\binom{8}{6} a^{16-3(6)} x^{6-4}(-1)^{6} \\
&= \frac{28}{a^{2}} x^{2} \\
&\left(\frac{3 x^{4}-4 x^{2}}{x^{2}}\right)\left(\frac{a^{2}}{\sqrt{x}}-\frac{\sqrt{x}}{a}\right)^{8}=\left(3 x^{2}-4\right)\left(\ldots+\frac{28}{a^{2}} x^{2}+70 a^{2}+\ldots\right) \\
&=\ldots+210 a^{4} x^{2}-\frac{112}{a^{2}} x^{2}+\ldots \\
& \therefore \text { Coefficient of } x^{2}=\mathbf{2 1 0} \boldsymbol{a}^{4}-\frac{\mathbf{1 1 2}}{\boldsymbol{a}^{\mathbf{2}}}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
(1+x)^{7} & =1^{7}+\binom{7}{1}(1)^{7-1} x+\binom{7}{2}(1)^{7-2}(x)^{2}+\binom{7}{3}(1)^{7-3}(x)^{3}+\ldots \\
& =\mathbf{1}+\mathbf{7} \boldsymbol{x}+\mathbf{2 1} \boldsymbol{x}^{\mathbf{2}}+\mathbf{3 5} \boldsymbol{x}^{\mathbf{3}}+\ldots
\end{aligned}
$$

(b)

$$
\begin{aligned}
T_{r+1} & =\binom{9}{r}\left(x^{2}\right)^{9-r}\left(-\frac{2}{x^{3}}\right)^{r} \\
& =\binom{\mathbf{9}}{r}(-\mathbf{2})^{r} \boldsymbol{x}^{\mathbf{1 8 - 5} r}
\end{aligned}
$$

(c)

$$
\text { Power }=18-5 r
$$

(d) For the x^{3} term,

$$
\begin{aligned}
18-5 r & =3 \\
r & =3
\end{aligned}
$$

$$
\text { Coefficient of } \begin{aligned}
x^{3} & =35+\binom{9}{3}(-2)^{3} \\
& =\mathbf{- 6 3 7}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
& (3-p x)^{5}+(2+x)^{6}=\left[\ldots+\binom{5}{3}(3)^{5-3}(-p x)^{3}+\ldots\right]+\left[\ldots+\binom{6}{3}(2)^{6-3}(x)^{3}+\ldots\right] \\
& =\ldots\left(-90 p^{3}+160\right) x^{3}+\ldots \\
& \therefore-90 p^{3}+160=\frac{595}{4} \\
& p^{3}=\frac{1}{8} \\
& p=\frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\left(x^{2}-2 x\right)^{2}(2+x)^{6} & =\left(x^{4}-4 x^{3}+4 x^{2}\right)\left(2^{6}+\binom{6}{1}(2)^{6-1}(x)+\ldots\right) \\
& =\ldots+512 x^{3}+\ldots \\
& \therefore \text { Coefficient of } x^{3}=\mathbf{5 1 2}
\end{aligned}
$$

6 Exponential \& Logarithms

6.1 Full Solutions

1. (a) When $t=0$,

$$
\begin{aligned}
N & =8000\left(2+3 e^{-\frac{0}{50}}\right) \\
& =8000\left(2+3 e^{0}\right) \\
& =40000
\end{aligned}
$$

(b) When $t=50$,

$$
\begin{aligned}
N & =8000\left(2+3 e^{-\frac{50}{50}}\right) \\
& =8000\left(2+3 e^{-1}\right) \\
& =24829.10 \ldots \\
& =\mathbf{2 4 8 0 0} \text { (3.s.f.) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
20000 & =8000\left(2+3 e^{-\frac{t}{50}}\right) \\
e^{-\frac{t}{50}} & =\frac{1}{6} \\
-\frac{t}{50} & =\ln \frac{1}{6} \\
t & =-50 \ln \frac{1}{6} \\
& =89.587973 \ldots \\
& \approx \mathbf{9 0} \text { years }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \begin{aligned}
& \frac{d N}{d t}=24000\left(-\frac{t}{50}\right) e^{-\frac{t}{50}} \\
&=-480 e^{-\frac{t}{50}} \\
& \begin{aligned}
\left.\frac{d N}{d t}\right|_{t=10} & =-480 e^{-\frac{10}{50}} \\
& =-392.990761 \ldots \\
& =-393
\end{aligned}
\end{aligned} . \begin{aligned}
\\
\end{aligned} \\
&
\end{aligned}
$$

\therefore The rate is decreasing at a rate of $\mathbf{3 9 3}$ polar bears/year
(e)

$$
\begin{aligned}
t \rightarrow \infty & \Rightarrow \quad e^{-\frac{t}{50}} \rightarrow 0 \\
N & \rightarrow 8000(2) \\
& =16000
\end{aligned}
$$

\therefore The population will never fall below 16000
(f) Diagram

2. (a) (i) Diagram

(ii)

$$
\begin{aligned}
y & =\log _{2}(3 x+1) \\
2^{y} & =3 x+1
\end{aligned}
$$

Since $2^{y}>0$,

$$
\begin{aligned}
3 x+1 & >0 \\
x & >-\frac{1}{3}(\text { shown })
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \log _{2}(3 x+1)+\frac{1}{2} \log _{\sqrt{2}}(3 x-1)=1 \\
& \log _{2}(3 x+1)+\frac{1}{2}\left[\frac{\log _{2}(3 x-1)}{\log _{2} \sqrt{2}}\right]=1 \\
& \log _{2}(3 x+1)+\log _{2}(3 x-1)=1 \\
& \log _{2}[(3 x+1)(3 x-1)]=1 \\
& \therefore 9 x^{2}-1=2 \\
& x^{2}=\frac{1}{3} \\
& x=\frac{1}{\sqrt{3}} \quad \text { or } \quad x=-\frac{1}{\sqrt{3}}(\mathrm{rej})
\end{aligned}
$$

3. (a) (i)

$$
\begin{aligned}
\log _{2} 1-p+q & =0-2^{x}+2^{y} \\
& =\mathbf{2}^{\boldsymbol{y}}-\mathbf{2}^{\boldsymbol{x}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\log _{2} \sqrt{\frac{p^{5}}{q^{3}}} & =\frac{1}{2}\left[\log _{2} p^{5}-\log _{2} q^{3}\right] \\
& =\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{5} \boldsymbol{x}-\mathbf{3} \boldsymbol{y})
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\log _{\sqrt{2}} 4 p & =\frac{\log _{2} 4+\log _{2} p}{\log _{2} \sqrt{2}} \\
& =\mathbf{2}(\mathbf{2}+\boldsymbol{x})
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 4 \log _{4} x+1=3 \log _{8}(5-3 x) \\
& 4\left(\frac{\log _{2} x}{\log _{2} 4}\right)+1=3\left(\frac{\log _{2}(5-3 x)}{\log _{2} 8}\right) \\
& \log _{2}(5-3 x)-2 \log _{2} x=1 \\
& \log _{2}\left(\frac{5-3 x}{x^{2}}\right)=1 \\
& \frac{5-3 x}{x^{2}}=2 \\
& 2 x^{2}+3 x-5=0 \\
&(x-1)(2 x+5)=0 \\
& \therefore x=\mathbf{1} \quad \text { or } \quad x=-\frac{5}{2}(\mathrm{rej})
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
2 \log _{5} x+\log _{25} 16 & =\log _{5}(9 x-2) \\
2 \log _{5} x+\frac{\log _{5} 16}{\log _{5} 25} & =\log _{5}(9 x-2) \\
2 \log _{5} x+\frac{1}{2} \log _{5} 16 & =\log _{5}(9 x-2) \\
\log _{5} x^{2}+\log _{5} 4 & =\log _{5}(9 x-2) \\
\therefore 4 x^{2} & =9 x-2 \\
4 x^{2}-9 x+2 & =0 \\
(4 x-1)(x-2) & =0 \\
\therefore x=\frac{\mathbf{1}}{\mathbf{4}} \quad \text { or } & x=\mathbf{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{1}{\log _{a b} a}-\frac{1}{\log _{a b} b} & =\log _{a} a b-\log _{b} a b \\
& =\log _{a} a+\log _{a} b-\log _{b} a-\log _{b} b \\
& =\log _{a} b-\log _{b} a \\
& =\frac{1}{\log _{b} a}-\frac{1}{\log _{a} b} \\
& =-\sqrt{\mathbf{2 9 3}}
\end{aligned}
$$

5. (a) (i) When $I=I_{0}$,

$$
\begin{aligned}
M & =\lg \left(\frac{I_{0}}{I_{0}}\right) \\
& =\mathbf{0}
\end{aligned}
$$

(ii)

$$
\begin{align*}
& 5.8=\lg \left(\frac{I_{T}}{I_{0}}\right) \\
& 5.8=\lg I_{T}-\lg I_{0} \tag{1}\\
& 6.3=\lg \left(\frac{l_{C}}{l_{0}}\right) \\
& 6.3=\lg I_{C}-\lg I_{0} \tag{2}
\end{align*}
$$

Taking Equation (2) - Equation (1),

$$
\begin{aligned}
0.5 & =\lg I_{C}-\lg I_{T} \\
& =\lg \left(\frac{l_{C}}{l_{T}}\right) \\
\therefore & \frac{l_{C}}{l_{T}}=\mathbf{1 0}^{\mathbf{0 . 5}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
2^{p-9} \div 8^{q}-\sqrt[4]{32^{p}} \ldots \ldots(1) \\
\log _{2} 6-\log _{4}(11 q-2 p)=1 \ldots \ldots(2)
\end{gathered}
$$

From Equation (1),

$$
\begin{align*}
2^{p-9} \div 2^{3 q} & =\left(2^{5 p}\right)^{\frac{1}{4}} \\
2^{p-9-3 q} & =2^{\frac{5 p}{4}} \\
\therefore p-9-3 q & =\frac{5 p}{4} \\
p=-12 q-36 & \ldots \ldots .(3) \tag{3}
\end{align*}
$$

From Equation (2),

$$
\begin{align*}
\log _{2} 6-\frac{\log _{2}(11 q-2 p)}{\log _{2} 4} & =1 \\
2 \log _{2} 6-\log _{2}(11 q-2 p) & =2 \\
\log _{2} \frac{36}{11 q-2 p} & =2 \\
\therefore \frac{36}{11 q-2 p} & =2^{2} \\
11 q-2 p & =9 \tag{4}
\end{align*}
$$

Substitute Equation (3) into Equation (4),

$$
\begin{aligned}
11 q-2(-12 q-36) & =9 \\
q & =-\frac{\mathbf{9}}{\mathbf{5}}
\end{aligned}
$$

Substitute $q=-\frac{9}{5}$ into Equation (3),

$$
\begin{aligned}
p & =-12\left(-\frac{9}{5}\right)-36 \\
& =-\frac{\mathbf{7 2}}{\mathbf{5}}
\end{aligned}
$$

7 Trigonometry

7.1 Full Solutions

1. First, note that A is in the 4 th quadrant, B is in the 2 nd quadrant

(a)

$$
\begin{aligned}
\cot A & =\frac{1}{\tan A} \\
& =\frac{1}{\left(-\frac{4}{3}\right)} \\
& =-\frac{3}{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
& =\left(\frac{3}{5}\right)\left(-\frac{12}{13}\right)-\left(-\frac{4}{5}\right)\left(\frac{5}{13}\right) \\
& =-\frac{\mathbf{1 6}}{\mathbf{6 5}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sin \left(\frac{B}{2}\right) & =\sqrt{\frac{1-\cos B}{2}}(\text { rej -ve }) \\
& =\sqrt{\frac{1-\left(-\frac{12}{13}\right)}{2}} \\
& =\sqrt{\frac{25}{26}} \\
& =\frac{5}{\sqrt{26}} \\
& =\frac{\mathbf{5} \sqrt{\mathbf{2 6}}}{\mathbf{2 6}}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
& T X=16 \cos \theta \quad X U=16 \sin \theta \quad W U=6 \cos \theta \quad W V=6 \sin \theta \\
& P=16+6+6 \sin \theta+(16 \sin \theta-6 \cos \theta)+16 \cos \theta \\
& =22+10 \cos \theta+22 \sin \theta \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
R & =\sqrt{(10)^{2}+(22)^{2}} \\
& =\sqrt{584} \\
& =2 \sqrt{146}
\end{aligned}
$$

$$
\tan \alpha=\frac{10}{22}
$$

$$
\alpha=\tan ^{-1}\left(\frac{10}{22}\right)
$$

$$
=24.443954 \ldots
$$

$$
=24.4^{\circ} \text { (1.d.p.) }
$$

$$
\therefore P=22+2 \sqrt{146} \sin \left(\theta+24.4^{\circ}\right)
$$

(c)

$$
\begin{aligned}
P_{\max } & =22+2 \sqrt{146} \\
& =46.16609 \ldots \mathrm{~cm}<45 \mathrm{~cm}
\end{aligned}
$$

\therefore Hence, it is possible for P to be 45 cm
(d) When $P=45$,

$$
\begin{aligned}
& 22+2 \sqrt{146} \sin \left[\theta+\tan ^{-1}\left(\frac{10}{22}\right)\right]=45 \\
& \sin \left[\theta+\tan ^{-1}\left(\frac{10}{22}\right)\right]=\frac{23}{\sqrt{584}} \\
& \left.\alpha=\sin ^{-1}\left(\frac{23}{\sqrt{584}}\right) \quad \text { (Quadrant } 1 \text { or } 2\right)
\end{aligned}
$$

For Quadrant 1,

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{23}{\sqrt{584}}\right)-\tan ^{-1}\left(\frac{10}{22}\right) \\
& =47.684470 \ldots \\
& =47.7^{\circ}(\text { 1.d.p. })
\end{aligned}
$$

For Quadrant 2,

$$
\begin{aligned}
\theta & =\pi-\sin ^{-1}\left(\frac{23}{\sqrt{584}}\right)-\tan ^{-1}\left(\frac{10}{22}\right) \\
& =83.427619 \ldots \\
& =83.4^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\text { LHS } & =\cos (A+B) \cos (A-B) \\
& =(\cos A \cos B-\sin A \sin B)(\cos A \cos B+\sin A \sin B) \\
& =\cos ^{2} A \cos ^{2} B-\sin ^{2} A \sin ^{2} B \\
& =\cos ^{2} A \cos ^{2} B-\left(1-\cos ^{2} A\right)\left(1-\cos ^{2} B\right) \\
& =\cos ^{2} A \cos ^{2} B-\left[1-\cos ^{2} A-\cos ^{2} B+\cos ^{2} A \cos ^{2} B\right] \\
& =\cos ^{2} A+\cos ^{2} B-1 \\
& =\text { RHS (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\cos 15^{\circ} \cos 75^{\circ} & =\cos \left(45^{\circ}-30^{\circ}\right) \cos \left(45^{\circ}+30^{\circ}\right) \\
& =\left(\cos 45^{\circ}\right)^{2}+\left(\cos 30^{\circ}\right)^{2}-1 \\
& =\left(\frac{1}{\sqrt{2}}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-1 \\
& =\frac{1}{2}+\frac{3}{4}-1 \\
& =\frac{\mathbf{1}}{\mathbf{4}}
\end{aligned}
$$

4. (a) (i)

$$
\begin{aligned}
\text { LHS } & =\sin x \cos x+\cot x \cos ^{2} x \\
& =\cos x(\sin x+\cot x \cos x) \\
& =\cos x\left[\sin x+\left(\frac{\cos x}{\sin x}\right) \cos x\right] \\
& =\cos x\left(\sin x+\frac{\cos ^{2} x}{\sin x}\right) \\
& =\cos x\left(\frac{\sin ^{2} x+\cos ^{2} x}{\sin x}\right) \\
& =\cos x\left(\frac{1}{\sin x}\right) \\
& =\cot x \\
& =\text { RHS (shown) }
\end{aligned}
$$

(ii) From part (a)(i),

$$
\begin{gathered}
\cot 3 x=1 \\
\tan 3 x=1 \\
\alpha=\tan ^{-1}(1) \\
=\frac{\pi}{4} \quad(\text { Quadrant } 1 \text { or } 3)
\end{gathered}
$$

For Quadrant 1 (1st rotation),

$$
\begin{aligned}
3 x & =\frac{\pi}{4} \\
x & =\frac{\pi}{\mathbf{1 2}}
\end{aligned}
$$

For Quadrant 3,

$$
\begin{aligned}
3 x & =\pi+\frac{\pi}{4} \\
& =\frac{5 \pi}{4} \\
\therefore x & =\frac{\mathbf{5 \pi}}{\mathbf{1 2}}
\end{aligned}
$$

For Quadrant 1 (2nd rotation),

$$
\begin{aligned}
3 x & =2 \pi+\frac{\pi}{4} \\
& =\frac{9 \pi}{4} \\
\therefore x & =\frac{\mathbf{3 \pi}}{\mathbf{4}}
\end{aligned}
$$

(b) (i) Diagram

(ii)

$$
3 \text { solutions }
$$

5. (a) Note that A and C are the maximum and minimum points of the curve, which is the amplitude

$$
\therefore 2 \times 3=6 \mathrm{~cm} \text { (shown) }
$$

(b)

$$
\begin{aligned}
& \text { Period }=2 \times 0.25 \\
&=0.5 \text { seconds } \\
& \begin{aligned}
\therefore b & =\frac{2 \pi}{0.5} \\
& =4 \pi \mathrm{rad} / \mathrm{s} \\
\therefore k & =4(\text { shown })
\end{aligned}
\end{aligned}
$$

(c)

$$
\begin{gathered}
-3 \cos (4 \pi t)+7=8 \\
\cos (4 \pi t)=-\frac{1}{3} \\
\alpha=\cos ^{-1}\left(\frac{1}{3}\right) \quad \text { (Quadrant } 2 \text { or } 3 \text {) }
\end{gathered}
$$

For Quadrant 2,

$$
\begin{aligned}
t & =\frac{\pi-\cos ^{-1}\left(\frac{1}{3}\right)}{4 \pi} \\
& =0.152043 \ldots \\
& =\mathbf{0 . 1 5 2} \mathbf{s}(\mathbf{3 . s . f .})
\end{aligned}
$$

For Quadrant 2,

$$
\begin{aligned}
t & =\frac{\pi+\cos ^{-1}\left(\frac{1}{3}\right)}{4 \pi} \\
& =0.347956 \ldots \\
& =\mathbf{0 . 3 4 8} \mathbf{~ s}(\mathbf{3 . s . f .})
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Duration } & =\frac{\left(\frac{\pi+\cos ^{-1}\left(\frac{1}{3}\right)}{4 \pi}\right)-\left(\frac{\pi-\cos ^{-1}\left(\frac{1}{3}\right)}{4 \pi}\right)}{2} \\
& =0.0979566 \ldots \\
& =0.0980 \mathrm{~s}(3 . \mathrm{s.f.})
\end{aligned}
$$

6. (a) From this diagram:

$$
\angle Q P X=\theta \text { (corresponding angles) }
$$

$\therefore Q X=14 \sin \theta$
$\angle P S Y=180^{\circ}-90^{\circ}-\theta$
$=90^{\circ}-\theta$ (adjacent angles on a straight line)

$$
\begin{aligned}
& \sin \angle P S Y=\frac{P Y}{8} \\
& \therefore P Y=8 \sin \left(90^{\circ}-\theta\right) \\
&=8 \cos \theta \\
& \therefore d=P Y+Q X \\
&=8 \cos \theta+14 \sin \theta \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& R=\sqrt{(8)^{2}+(14)^{2}} \\
&=\sqrt{260} \\
& \alpha=\tan ^{-1}\left(\frac{8}{14}\right) \\
&=29.7^{\circ}(1 . \text { d.p. }) \\
& \therefore d=\sqrt{\mathbf{2 6 0}} \sin \left(\boldsymbol{\theta}+\mathbf{2 9 . 7 ^ { \circ }}\right)
\end{aligned}
$$

(c)

$$
\begin{array}{r}
\sqrt{260} \sin \left[\theta+\tan ^{-1}\left(\frac{8}{14}\right)\right]=\sqrt{200} \\
\sin \left[\theta+\tan ^{-1}\left(\frac{8}{14}\right)\right]=\sqrt{\frac{200}{260}} \\
\left.\alpha=\sin ^{-1}\left(\sqrt{\frac{10}{13}}\right) \quad \text { (Quadrant } 1\right)
\end{array}
$$

For Quadrant 1,

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\sqrt{\frac{10}{13}}\right)-\tan ^{-1}\left(\frac{8}{14}\right) \\
& =31.544603 \ldots \\
& =31.5^{\circ} \text { (1.d.p.) }
\end{aligned}
$$

(d)

$$
d_{\max }=2 \sqrt{65}
$$

8 Coordinate Geometry

8.1 Full Solutions

1. (a) Since $A B C$ is a right-angled triangle

$$
\begin{aligned}
m_{A B} \times m_{A C} & =-1 \\
\left(\frac{0-8}{k-2}\right) \times\left(\frac{0-(-4)}{k-(-2)}\right) & =-1 \\
-36 & =-(k-2)(k+2) \\
-32 & =-k^{2}+4 \\
k^{2} & =36 \\
k & = \pm 6 \text { (rej -ve) }
\end{aligned}
$$

$$
\therefore k=\mathbf{6}
$$

(b) Let the coordinates of N be $(0, n)$

$$
\begin{aligned}
& m_{B N}=m_{B C} \\
& \frac{8-n}{2-0}=\frac{8-(-4)}{2-(-2)} \\
& \frac{8-n}{2}=3 \\
& n=2 \\
& \therefore N(0,2) \\
& \text { Mid-point of } B C=\left(\frac{2-2}{2}, \frac{8-4}{2}\right) \\
&=(0,2) \\
&= \text { Coordinates of } N \text { (shown) }
\end{aligned}
$$

(c)

$$
\text { Gradient of } \begin{aligned}
A C & =\frac{0-(-4)}{6-(-2)} \\
& =\frac{1}{2}
\end{aligned}
$$

Hence, the equation of $A C$ is

$$
\begin{aligned}
y-0 & =\frac{1}{2}(x-6) \\
y & =\frac{1}{2} x-3
\end{aligned}
$$

Let the coordinates of M be $\left(a, \frac{1}{2} a-3\right)$

$$
\begin{aligned}
\text { Area of quadrilateral } A B N M & =25 \text { units }^{2} \\
\frac{1}{2}\left|\begin{array}{ccccc}
6 & 2 & 0 & a & 6 \\
0 & 8 & 2 & \frac{1}{2}-3 & 0
\end{array}\right| & =25 \\
\frac{1}{2}\left[(48+4)-\left(-2 a+6\left(\frac{1}{2} a-3\right)\right)\right] & =25 \\
5 a & =20 \\
a & =4
\end{aligned}
$$

$$
\therefore M(4,-1)
$$

2. (a)

$$
\begin{gathered}
\frac{3-k}{2-(-2)}=1.5 \\
2-k=6 \\
k=-\mathbf{3}
\end{gathered}
$$

(b)

$$
\text { Gradient of } B D=-\frac{2}{3}
$$

Hence, the equation of $B D$ is

$$
\begin{gathered}
y-(-2)=-\frac{2}{3}(x-1) \\
\therefore \boldsymbol{y}=-\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{x}-\frac{\mathbf{4}}{\mathbf{3}}
\end{gathered}
$$

(c)

$$
\begin{array}{r}
y=\frac{3}{2} x \ldots \\
y=-\frac{2}{3} x-\frac{4}{3} \tag{2}
\end{array}
$$

Let Equation (1) = Equation (2),

$$
\begin{aligned}
\frac{3}{2} x & =-\frac{2}{3} x-\frac{4}{3} \\
\frac{13}{6} x & =-\frac{4}{3} \\
x & =-\frac{8}{13}
\end{aligned}
$$

Substitute $x=-\frac{8}{13}$ into Equation (1),

$$
\begin{aligned}
y & =\frac{3}{2}\left(-\frac{8}{13}\right) \\
& =-\frac{12}{13} \\
\therefore M & \left(-\frac{\mathbf{8}}{\mathbf{1 3}},-\frac{\mathbf{1 2}}{\mathbf{1 3}}\right)
\end{aligned}
$$

(d) Since $A B C D$ is a kite,

$$
\begin{aligned}
& D M=B M \\
& \sqrt{\left(a+\frac{8}{13}\right)^{2}+\left(b+\frac{12}{13}\right)^{2}}=\sqrt{\left(-\frac{8}{13}-1\right)^{2}+\left(-\frac{12}{13}+2\right)^{2}} \\
& \sqrt{\left(a+\frac{8}{13}\right)^{2}+\left(b+\frac{12}{13}\right)^{2}}=\sqrt{\frac{49}{13}} \\
&\left(a+\frac{8}{13}\right)^{2}+\left(b+\frac{12}{13}\right)^{2}=\frac{49}{13} \\
& 13\left(a+\frac{8}{13}\right)^{2}+13\left(b+\frac{12}{13}\right)^{2}=49 \text { (shown) }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& \sqrt{(3 a-2)^{2}+(2 a+4-0)^{2}}=4 \sqrt{5} \\
& \sqrt{9 a^{2}-12 a+4+4 a^{2}+16 a+16}=\sqrt{80} \\
& 13 a^{2}+4 a+20=80 \\
& 13 a^{2}+4 a-60=0 \\
&(a-2)(13 a+30)=0 \\
& a=\mathbf{2} \quad \text { or } \quad a=-\frac{30}{13}(\mathrm{rej})
\end{aligned}
$$

(b)

$$
\text { Gradient of } \begin{aligned}
A D & =\frac{2-0}{-2-2} \\
& =-\frac{1}{2}
\end{aligned}
$$

\therefore Gradient of $D C=2$
Hence, the equation of $C D$ is

$$
\begin{aligned}
& y-2=2(x+2) \\
& y=2 x+6 \\
& \therefore \boldsymbol{C}(\mathbf{0}, \mathbf{6})
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Midpoint of } A B & =\left(\frac{6+2}{2}, \frac{8+0}{2}\right) \\
& =(4,4)
\end{aligned}
$$

Hence, the equation of the perpendicular bisector is

$$
\begin{aligned}
y-4 & =-\frac{1}{2}(x-4) \\
\boldsymbol{y} & =-\frac{1}{\mathbf{2}} \boldsymbol{x}+\mathbf{6}
\end{aligned}
$$

(d) Yes, the point $C(0,6)$ lies on the perpendicular bisector as the y-intercept of the perpendicular bisector has a coordinate of $(0,6)$
(e)

$$
\text { Area of trapezium } \begin{aligned}
A B C D & =\frac{1}{2}\left|\begin{array}{ccccc}
0 & -2 & 2 & 6 & 0 \\
6 & 2 & 0 & 8 & 6
\end{array}\right| \\
& =\frac{1}{2}|52-(-8)| \\
& =\frac{1}{2}|60| \\
& =\mathbf{3 0} \mathbf{u n i t s}^{2}
\end{aligned}
$$

4. (a)

$$
y=x-\frac{1}{2}
$$

Substitute $y=0$,

$$
\begin{aligned}
& 0=x-\frac{1}{2} \\
& x=\frac{1}{2} \\
& \therefore D\left(\frac{1}{2}, 0\right)
\end{aligned}
$$

' Let the coordinates of C be $\left(x_{c}, y_{c}\right)$

$$
\begin{gathered}
\text { Midpoint of } A C=\text { Midpoint of } B D \\
\left(\frac{-0.5+x_{c}}{2}, \frac{2+y_{c}}{2}\right)=\left(\frac{1+0.5}{2}, \frac{3.5+0}{2}\right) \\
\therefore x_{c}=2 \quad y_{c}=1.5 \\
\therefore \boldsymbol{C}\left(\mathbf{2}, \mathbf{1} \frac{\mathbf{1}}{\mathbf{2}}\right)
\end{gathered}
$$

By inspection, using $3 B E=B C$

$$
E\left(1 \frac{1}{3}, 2 \frac{5}{6}\right)
$$

(b) At F, substitute $x=\frac{4}{3}$ into $C D$,

$$
\begin{aligned}
y & =\frac{4}{3}-\frac{1}{2} \\
& =\frac{5}{6} \\
\therefore \boldsymbol{F} & \left(\mathbf{1} \frac{\mathbf{1}}{\mathbf{3}}, \frac{\mathbf{5}}{\mathbf{6}}\right)
\end{aligned}
$$

(c) First, note that $A N$ and $E F$ are parallel, and are parallel to the y-axis

$$
\begin{aligned}
\text { Gradient of } A E & =\frac{\frac{17}{6}-2}{\left(\frac{4}{3}\right)-\left(-\frac{1}{2}\right)} \\
& =\frac{5}{11} \\
\text { Gradient of } N F & =\frac{\frac{5}{6}-0}{\left(\frac{4}{3}\right)-\left(-\frac{1}{2}\right)} \\
& =\frac{5}{11}
\end{aligned}
$$

\therefore Gradient of $A E=$ Gradient of $N F$
Since $A E F N$ is a quadrilateral with 2 pairs of parallel sides, it is a parallelogram (shown)

9 Further Coordinate Geometry

9.1 Full Solutions

1. (a)

$$
\begin{aligned}
& x^{2}-6 x+y^{2}+10 y=66 \\
&(x-3)^{2}-9+(y+5)^{2}-25=66 \\
&(x-3)^{2}+(y+5)^{2}=66+9+25 \\
&(x-3)^{2}+(y+5)^{2}=10^{2} \\
& \therefore \text { Centre of } C_{1}=(3,-5) \\
& \therefore \text { Radius of } C_{1}=10 \text { units }
\end{aligned}
$$

The centre of the circle is 5 units from the x-axis and 3 units from they-axis. As the radius of the circle (10 units) is larger than the distance of the centre from both axes $(10>3$ and $10>5)$, the circle will intersect both axes twice. Hence, they are not tangents to the circle C_{1}
(b)

$$
\begin{aligned}
\text { Distance } & =\sqrt{(3-2)^{2}+(-5-(-4))^{2}} \\
& =\sqrt{2}<10
\end{aligned}
$$

Since the distance between $(2,-4)$ and the centre is smaller than the radius, therefore the point $(2,-4)$ lies inside the circle
(c)

$$
\text { New centre of } C_{2}=(-3,-5)
$$

$$
\therefore(x+3)^{2}+(y+5)^{2}=100
$$

2. (a)

$$
\begin{gathered}
x^{2}+y^{2}+p x+\left(\frac{p}{2}+4\right) y+k=0 \\
\therefore C\left(-\frac{p}{2},-\frac{p}{4}-2\right)
\end{gathered}
$$

Substitute C into the line,

$$
\begin{gathered}
3\left(-\frac{p}{2}\right)-2\left(-\frac{p}{2}-2\right)-8=0 \\
3 p-p-8+16=0 \\
\therefore p=-4 \text { (shown) }
\end{gathered}
$$

(b)

$$
C(2,-1)
$$

(c) From the tangent $x=-8$,

$$
\text { Radius of circle }=10 \text { units }
$$

$$
\begin{aligned}
\therefore 10 & =\sqrt{(2)^{2}+(-1)^{2}-k} \\
100 & =4+1-k \\
k & =\mathbf{9 5}
\end{aligned}
$$

(d)

$$
\text { Length of } \begin{aligned}
C A & =\sqrt{(2-14)^{2}+(-1-(-8))^{2}} \\
& =\sqrt{193}>10
\end{aligned}
$$

Since the distance between $(14,-8)$ and the centre is bigger than the radius, therefore the point $(14,-8)$ lies outside the circle
(e)

$A C X$ is a straight line

3. (a) Since the centres lie on the line $y=x$, let the centres of C_{1} and C_{2} be (a, a)

$$
\begin{aligned}
a^{2}+(a+3)^{2} & =5 \\
a^{2}+a^{2}+6 a+9-5 & =0 \\
a^{2}+3 a+2 & =0 \\
(a+1)(a+2) & =0 \\
a=-1 \quad \text { or } \quad a & =-2 \\
C_{1}:(\boldsymbol{x}+\mathbf{1})^{2}+(\boldsymbol{y}+\mathbf{1})^{2}=\mathbf{5} \quad \text { and } \quad C_{2} & :(\boldsymbol{x}+\mathbf{2})^{\mathbf{2}}+(\boldsymbol{y}+\mathbf{2})^{\mathbf{2}}=\mathbf{5}
\end{aligned}
$$

(b) For C_{1}, substitute $y=0$,

$$
\begin{equation*}
(x+1)^{2}+(1)^{1}=5 \tag{1}
\end{equation*}
$$

For C_{2}, substitute $y=0$,

$$
\begin{equation*}
(x+2)^{2}+(2)^{2}=5 \tag{2}
\end{equation*}
$$

Let Equation (1) = Equation (2),

$$
\begin{aligned}
(x+1)^{2}+1 & =(x+2)^{2}+4 \\
x^{2}+2 x+1+1 & =x^{2}+4 x+4+4 \\
2 x+6 & =0 \\
x & =-\mathbf{3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Distance between } 2 \text { centres } & =\sqrt{(-1+2)^{2}+(-1+2)^{2}} \\
& =\sqrt{2}
\end{aligned}
$$

$$
\text { Greatest distance }=\sqrt{5}+\sqrt{2}+\sqrt{5}
$$

$$
=\sqrt{2}+2 \sqrt{5}
$$

$$
=5.886349 \ldots
$$

$$
=5.89 \text { units }
$$

4. (a)

$$
\begin{aligned}
& \text { Gradient of } \begin{aligned}
P Q & =\frac{7-3}{6-(-2)} \\
& =\frac{1}{2} \\
\text { Gradient of } R Q & =\frac{11-1}{4-6} \\
& =-2
\end{aligned} \\
& \text { Gradient of } P Q \times \text { Gradient of } R Q
\end{aligned} \begin{aligned}
& =\frac{1}{2} \times(-2) \\
& =-1
\end{aligned}
$$

Since the product of the gradients is $-1, P Q$ is perpendicular to $R Q$. Hence, $\angle P Q R=90^{\circ}$
(b) Using the property: angles in a semicircle, $P R$ is the hypotenuse of the right-triangle $P Q R$, and hence, P, Q and R lie on the circle with diameter $P R$
(c)

$$
\begin{aligned}
\text { Centre } & =\text { Midpoint of } P R \\
& =\left(\frac{-2+4}{2}, \frac{3+11}{2}\right) \\
& =(1,7) \\
\text { Radius }= & P C \\
= & \sqrt{(1-(-2))^{2}+(7-3)^{2}} \\
= & 5 \text { units }
\end{aligned}
$$

$$
\therefore(x-1)^{2}+(y-7)^{2}=25
$$

(d)

$$
\begin{aligned}
\text { Distance } & =\sqrt{(3-1)^{2}+(2-7)^{2}} \\
& =\sqrt{29}>5
\end{aligned}
$$

Since the distance between $(3,2)$ and the centre is bigger than the radius, therefore the point $(3,-2)$ lies outside the circle
(e) Note that the centre lies on the normal to the circle. Hence, substitute $(1,7)$ into the equation of the circle

$$
\begin{aligned}
3(7)-4(1) & =k \\
k & =\mathbf{1 7}
\end{aligned}
$$

10 Linear Law

10.1 Full Solutions

1. (a)

$$
\begin{aligned}
y & =k(2)^{\frac{t}{m}} \\
\lg y & =\lg k+\frac{t}{m} \lg 2 \\
\lg y & =\left(\frac{1}{m} \lg 2\right) t+\lg k
\end{aligned}
$$

Hence, we are plotting $\lg y$ against t

t	10	20	30	40	50
$\lg y$	3.41	3.63	3.85	4.06	4.28

(b) (i) From the graph,

$$
\begin{aligned}
\lg k & =3.2 \\
k & =10^{3.2} \\
& =1584.893192 \ldots \\
& =\mathbf{1 5 8 0} \text { (3.s.f.) } \\
\frac{1}{m} \lg 2 & =\frac{4.35-3.51}{55-15} \\
& =0.021 \\
m & =\frac{1}{\left(\frac{0.021}{\lg 2}\right)} \\
& =14.334761 \ldots \\
& =\mathbf{1 4 . 3}(\mathbf{3 . s . f .})
\end{aligned}
$$

(ii) When $y=15000$,

$$
\lg y=4.18 \text { (3.s.f.) }
$$

From the graph,

$$
t=46.6 \text { minutes }
$$

2. (a)

$$
\begin{gathered}
\text { Gradient }=\frac{9-3}{2-5} \\
=-2 \\
\therefore \frac{x}{y}-3=-2\left(\frac{1}{x}-5\right) \\
\frac{x}{y}=-\frac{2}{x}+13 \\
\frac{x}{y}=\frac{13 x-2}{x} \\
\therefore \boldsymbol{y}=\frac{\boldsymbol{x}^{\mathbf{2}}}{\mathbf{1 3 x} \boldsymbol{x}-\mathbf{2}}
\end{gathered}
$$

(b)

$$
\begin{aligned}
& x^{n} y=k \\
& \lg y=(-n) \lg x+\lg k
\end{aligned}
$$

$\lg x$	0.301	0.602	0.778	0.903
$\lg y$	0.928	0.777	0.690	0.627

From the graph,

$$
\begin{aligned}
\lg k & =1.08 \\
k & =10^{1.08} \\
& =12.022644 . . \\
& =\mathbf{1 2 . 0} \quad \text { (3.s.f.) } \\
-n & =\frac{0.98-0.38}{0.2-1.4} \\
n & =\frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
P & =P_{0} e^{-k t} \\
\ln P & =\ln P_{0} e^{-k t} \\
\ln P & =-k t+\ln P_{0}
\end{aligned}
$$

t	6	9	12	15	18
$\ln P$	5.61	5.31	5.02	4.72	4.42

(b) From the graph

$$
\begin{aligned}
\ln P_{0} & =6.2 \\
P_{0} & =e^{6.2} \\
& =492.749041 \ldots \\
& \approx \mathbf{5 0 0} \text { (nearest hundredth) }
\end{aligned}
$$

$$
\begin{aligned}
-k & =\frac{5.97-4.55}{2.3-16.5} \\
k & =\frac{\mathbf{1}}{\mathbf{1 0}}
\end{aligned}
$$

(c) When $P=100$,

$$
\ln P=4.61 \text { (3.s.f.) }
$$

From the graph,

$$
\text { Number of years }=16.5 \approx \mathbf{1 7} \text { years }
$$

11 Proofs of Plane Geometry

11.1 Full Solutions

1. (a) Since D and G are the mid-points of $H B$ and $A B$ respectively

$$
\begin{aligned}
\therefore & G O \text { is parallel to } A D \text { (midpoint theorem) } \\
& \angle D A B=90^{\circ} \text { (angles in a semi-circle) } \\
& \therefore \angle G O B=90^{\circ} \text { (corresponding angles) }
\end{aligned}
$$

(b)

$$
\angle D A H=\angle C A D(A D \text { bisects } \angle C A H)
$$

$$
\angle A B D=\angle D A H \text { (alternate segment theorem) }
$$

$$
\angle C B D=\angle C A D \text { (angles in the same segment) }
$$

$$
\therefore \angle C B D=\angle D A H=\angle A B D \text { (shown) }
$$

2. (a)

$$
\begin{aligned}
\angle D B F & =\angle B A D(\text { alternate segment theorem }) \\
& =\angle A D B(\triangle A B D \text { is an isosceles triangle })
\end{aligned}
$$

$A D$ is parallel to $B F$ (alternate angles)
Since $A D=B F, A B F D$ is a parallelogram
(b)

$$
\begin{aligned}
& \angle E D F=\angle D B C \text { (alternate segment theorem) (A) } \\
& \angle D F E=180^{\circ}-\angle B F D \text { (adjacent angles on a straight line) } \\
& =180^{\circ}-\angle B A D \text { (opposite angles in a parallelogram) } \\
& \\
& =180^{\circ}-\left(180^{\circ}-\angle D C B\right) \text { (angles in opposite segment) } \\
& \\
& =\angle D C B \text { (A) }
\end{aligned}
$$

By the AA similarity test, $\triangle B C D$ is similar to $\triangle D F E$
(c) From part (b),

$$
\begin{aligned}
\frac{B D}{D E} & =\frac{C D}{E F} \\
B D \times E F & =C D \times D E \text { (shown) }
\end{aligned}
$$

3. (a)

$$
\begin{gathered}
\angle B D C=90^{\circ} \text { (angles in a semicircle) } \\
\angle B F C=90^{\circ} \text { (angles in the same segment) } \\
\angle B F A=180^{\circ}-\angle B F E \text { (AFEC is a straight line) } \\
=180^{\circ}-90^{\circ} \\
=90^{\circ} \text { (angles on a straight line) } \\
\angle B H A=\angle B F A=90^{\circ} \text { (angles in the same segment) } \\
\angle A H D=180^{\circ}-\angle B H A \text { (BHED is a straight line) } \\
=180^{\circ}-90^{\circ} \\
=90^{\circ} \text { (angles on a straight line) } \\
\angle A H D=\angle B D C=\angle H D C \text { (alternate angles) } \\
\therefore C D \text { is parallel to } A H \text { (shown) }
\end{gathered}
$$

(b)

$$
\angle B H A=\angle B F A=90^{\circ} \text { (angles in the same segment) }
$$

\therefore Using angles in a semicircle, $A B$ is the diameter of the circle (shown)
(c) Since $A B$ and $B C$ are tangential to the smaller and bigger circle respectively

$$
\begin{gathered}
\angle A B C=90^{\circ} \text { (tangent is perpendicular to radius) } \\
\angle B F C=90^{\circ}(\text { part (a)) } \\
\therefore \angle A B C=\angle B F C \text { (A) } \\
\angle B C A=\angle F C B \text { (common angle) (A) } \\
\text { By the AA similar test, } \triangle A B C \text { is similar to } \triangle B F C
\end{gathered}
$$

(d) From part (c),

$$
\begin{align*}
\frac{B C}{F C} & =\frac{A C}{C B} \\
B C^{2} & =C F \times A C \tag{1}
\end{align*}
$$

Since $\triangle A B C$ is a right-triangle, by Pythagoras Theorem,

$$
\begin{equation*}
B C^{2}=A C^{2}-A B^{2} \tag{2}
\end{equation*}
$$

Hence, let Equation (1) = Equation (2),

$$
\left.\therefore A C^{2}-A B^{2}=C F \times A C \text { (shown }\right)
$$

4. (a)

$$
\begin{gathered}
\angle Z X Q=\angle S R X \text { (alternate segment theorem) } \\
\angle Z X Q=\angle Q X R(X Q \text { is the angle bisector of } \angle R X Z) \\
\therefore \angle Q X R=\angle S R X \\
\therefore S R=S X \text { (base angles of an isosceles triangle) }
\end{gathered}
$$

(b) Let $\angle Q X R=x$

$$
\begin{gathered}
\angle R S X=180^{\circ}-2 x \text { (angles in an isosceles triangle) } \\
\angle Y S Q=180^{\circ}-2 x \text { (vertically opposite angles) } \\
\angle R Z X=\angle Z X R=2 x \text { (base angles of the isosceles triangle) } \\
\therefore \angle R Z X+\angle Y S Q=180^{\circ}-2 x+2 x \\
=180^{\circ}
\end{gathered}
$$

Using opposite angles are supplementary in a cyclic quadrilateral, Z, Y, S and Q can have a circle drawn through (shown)

12 Differentiation

12.1 Full Solutions

1. (a)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sqrt{1-4 x}\left(2 e^{2 x}\right)-\left[\frac{1}{2}(1-4 x)^{-\frac{1}{2}}(-4)\right]\left(e^{2 x}\right)}{(\sqrt{1-4 x})^{2}} \\
& =\frac{e^{2 x}\left(2 \sqrt{1-4 x}+2(1-4 x)^{-\frac{1}{2}}\right)}{1-4 x} \\
& =\frac{2 e^{2 x}(1-4 x+1)}{(1-4 x) \sqrt{1-4 x}} \\
& =\frac{4 e^{2 x}(1-2 x)}{(1-4 x) \sqrt{1-4 x}}(\text { shown })
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\frac{d y}{d x} & =1+2 \sin x \cos x \\
& =1+\sin 2 x
\end{aligned}
$$

(ii) At stationary point, $\frac{d y}{d x}=0$

$$
\begin{aligned}
1+\sin 2 x & =0 \\
\sin 2 x & =-1
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\sin ^{-1}(1) \\
& =\frac{\pi}{2} \quad(\text { Quadrant } 3 \text { or } 4)
\end{aligned}
$$

$$
\begin{aligned}
x & =\frac{\left(\pi+\frac{\pi}{2}\right)}{2} \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

Substitute $x=\frac{3 \pi}{4}$ into the curve,

$$
\begin{aligned}
y & =\frac{3 \pi}{4}+\sin ^{2}\left(\frac{3 \pi}{4}\right) \\
& =\frac{3 \pi+2}{4} \\
& \therefore\left(\frac{\mathbf{3 \pi}}{\mathbf{4}}, \frac{\mathbf{3} \boldsymbol{\pi}+\mathbf{2}}{4}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =\ln \left(\frac{x-2}{x-3}\right)^{2} \\
& =2[\ln (x-2)-\ln (x-3)] \\
\therefore \frac{d y}{d x} & =2\left(\frac{1}{x-2}-\frac{1}{x-3}\right) \\
& =-\frac{2}{(x-2)(x-3)}
\end{aligned}
$$

Since the graph is decreasing, $\frac{d y}{d x}<0$

$$
\begin{aligned}
- & \frac{2}{(x-2)(x-3)}<0 \\
& (x-2)(x-3)>0 \\
\therefore \boldsymbol{x} & <\mathbf{2} \quad \text { and } \quad \boldsymbol{x}>\boldsymbol{3}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\frac{d y}{d x} & =\left(3-10 x+\frac{1}{x}\right) e^{3 x-5 x^{2}+\ln 2} \\
& =\left(3-10 x+\frac{1}{x}\right) 2 x e^{3 x-5 x^{2}} \\
& =\mathbf{2} \boldsymbol{e}^{\mathbf{3 x - 5} \boldsymbol{x}^{2}}\left(-\mathbf{1 0} \boldsymbol{x}^{\mathbf{2}}+\mathbf{3} \boldsymbol{x}+\mathbf{1}\right)
\end{aligned}
$$

(b) At the stationary point, $\frac{d y}{d x}=0$,

$$
\begin{gathered}
2 e^{3 x-5 x^{2}}\left(-10 x^{2}+3 x+1\right)=0 \\
2 e^{3 x-5 x^{2}}=0(\text { N.A. }) \quad \text { or } \quad-10 x^{2}+3 x+1=0
\end{gathered}
$$

For the quadratic expression,

$$
\begin{aligned}
-10 x^{2}+3 x+1 & =0 \\
(2 x-1)(-5 x-1) & =0 \\
\therefore x=\frac{1}{2} \quad \text { or } \quad x & =-\frac{1}{5}(\mathrm{rej})
\end{aligned}
$$

Hence, substitute $x=\frac{1}{2}$ into the curve,

$$
\begin{aligned}
\therefore y= & e^{3\left(\frac{1}{2}\right)-5\left(\frac{1}{2}\right)^{2}+\ln 2\left(\frac{1}{2}\right)} \\
= & e^{\frac{1}{4}} \\
& \therefore\left(\frac{\mathbf{1}}{\mathbf{2}}, e^{\frac{1}{4}}\right)
\end{aligned}
$$

(c)

$$
\left.\left.\begin{array}{rl}
\frac{d^{2} y}{d x^{2}} & =\left[2(3-10 x) e^{3 x-5 x^{2}}\right]\left(-10 x^{2}+3 x+1\right)+(-20 x+3)\left(2 e^{3 x-5 x^{2}}\right) \\
=2 e^{3 x-5 x^{2}}\left[(3-10 x)\left(-10 x^{2}+3 x+1\right)+(-20 x+3)\right] \\
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=\frac{1}{2}}= & 2 e^{3\left(\frac{1}{2}\right)-5\left(\frac{1}{2}\right)^{2}}\left[\left(3-10\left(\frac{1}{2}\right)\right)\left(-10\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1\right)-20\left(\frac{1}{2}\right)+3\right] \\
= & -17.976355 \ldots
\end{array}\right)<0\right] \text { } \begin{aligned}
& \therefore\left(\frac{1}{2}, e^{\frac{1}{4}}\right) \text { is a maximum point }
\end{aligned}
$$

3. (a)

$$
\begin{gathered}
y=h e^{x}+\frac{k}{e^{2 x}} \\
\frac{d y}{d x}=h e^{x}-\frac{2 k}{e^{2 x}} \quad \frac{d^{2} y}{d x^{2}}=h e^{x}+\frac{4 k}{e^{2 x}} \\
\text { LHS }=\frac{d^{2} y}{d x^{2}}-2\left(\frac{d y}{d x}\right) \\
=h e^{x}+\frac{4 k}{e^{2 x}}-2\left(h e^{x}-\frac{2 k}{e^{2 x}}\right) \\
=-h e^{x}+\frac{8 k}{e^{2 x}} \\
\therefore h=-\mathbf{1} \quad k=\frac{\mathbf{1}}{\mathbf{4}}
\end{gathered}
$$

(b) Let the total surface area of ice block be A

$$
\begin{aligned}
A & =2 \pi r^{2}+2 \pi r(2 r) \\
& =6 \pi r^{2} \\
\frac{d r}{d t} & =\frac{d r}{d A} \times \frac{d A}{d t} \\
& =\frac{1}{\left(\frac{d A}{d r}\right)} \times \frac{d A}{d t} \\
& =\frac{1}{12 \pi r} \times(-72) \\
& =-\frac{6}{\pi r}
\end{aligned}
$$

Hence, when $r=5$,

$$
\left.\frac{d r}{d t}\right|_{r=5}=-\frac{6}{5 \pi}
$$

\therefore The radius of the ice block decreases at $\frac{6}{5 \pi} \mathrm{~cm} / \mathrm{s}$
4. (a)

$$
\begin{gathered}
2 x^{2}+2(2 x+x) h=2700 \\
\therefore \boldsymbol{h}=\frac{\mathbf{1 3 5 0}-\boldsymbol{x}^{\mathbf{2}}}{\mathbf{3 x}}
\end{gathered}
$$

(b)

$$
\begin{aligned}
V & =2 x^{2} h \\
& =2 x^{2}\left(\frac{1350-x^{2}}{3 x}\right) \\
& =900 x-\frac{2}{3} x^{3}(\text { shown })
\end{aligned}
$$

(c)

$$
\frac{d V}{d x}=900-2 x^{2}
$$

When V is maximum, $\frac{d V}{d x}=0$,

$$
\begin{aligned}
900-2 x^{2} & =0 \\
x^{2} & =450 \\
x=\mathbf{1 5} & \sqrt{\mathbf{2}} \quad(\text { rej -ve }) \\
\left.\frac{d^{2} y}{d x^{2}}\right|_{x=15 \sqrt{2}} & =-4 x \\
& =-4(15 \sqrt{2}) \\
& =-60 \sqrt{2}<0
\end{aligned}
$$

Hence, V is maximum
(d)

$$
\begin{aligned}
V & =900(15 \sqrt{2})-\frac{2}{3}(15 \sqrt{2})^{3} \\
& =\mathbf{9 0 0 0} \sqrt{\mathbf{2}} \mathbf{c m}^{\mathbf{3}}
\end{aligned}
$$

5. (a) (i)

$$
\begin{aligned}
\frac{d y}{d x} & =(3 x)\left(-2 e^{-2 x}\right)+\left(e^{-2 x}\right)(3 \\
& =\mathbf{3} \boldsymbol{e}^{-\mathbf{2 x}}(\mathbf{- 2 x}+\mathbf{1})
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =3 e^{-2 x}(-2)+(-2 x+1)\left(3 e^{-2 x}\right)(-2) \\
& =-6 e^{-2 x}(2-2 x) \\
& =12 e^{-2 x}(x-1) \\
\therefore p= & e^{2 x}\left(\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y\right) \\
= & e^{2 x}\left[\left(12 x e^{-2 x}-12 e^{-2 x}\right)+\left(3 e^{-2 x}-6 x e^{-2 x}\right)-2\left(3 x e^{-2 x}\right)\right] \\
= & 12 x-12+3-6 x-6 x \\
= & -\mathbf{9}
\end{aligned}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
y & =\ln \left(\frac{1-\cos x}{\sin x}\right) \\
& =\ln (1-\cos x)-\ln (\sin x) \\
\frac{d y}{d x} & =\frac{\sin x}{1-\cos x}-\frac{\cos x}{\sin x} \\
& =\frac{\sin ^{2} x-\cos x(1-\cos x)}{\sin x(1-\cos x)} \\
& =\frac{\sin ^{2} x-\cos x+\cos ^{2} x}{\sin x(1-\cos x)} \\
& =\frac{1-\cos x}{\sin x(1-\cos x)} \\
& =\frac{1}{\sin x} \\
& =\csc x \text { (shown) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d y}{d t} & =2\left(\frac{d x}{d t}\right) \\
\frac{d y}{d t} & =\left(\frac{d y}{d x}\right)\left(\frac{d x}{d t}\right) \\
\therefore 2\left(\frac{d x}{d t}\right) & =\left(\frac{d y}{d x}\right)\left(\frac{d x}{d t}\right) \\
\frac{d y}{d x} & =2 \\
\csc x & =2 \\
\sin x & =\frac{1}{2} \\
x & =\frac{\boldsymbol{\pi}}{\mathbf{6}} \mathrm{rad}
\end{aligned}
$$

13 Integration

13.1 Full Solutions

1.

$$
\begin{aligned}
f^{\prime}(x) & =\int 4 e^{2 x}+\frac{9}{(3 x+1)^{2}} d x \\
& =2 e^{2 x}+\frac{9(3 x+1)^{-1}}{(-1)(3)}+c \\
& =2 e^{2 x}-\frac{3}{3 x-1}+c
\end{aligned}
$$

Since $f^{\prime}(0)=-1$,

$$
\begin{aligned}
& f^{\prime}(0)=-1 \\
& 2-3+c=-1 \\
& c=0 \\
& f^{\prime}(x)=2 e^{2 x}-\frac{3}{3 x+1} \\
& f(x)=\int 2 e^{2 x}-\frac{3}{3 x+1} d x \\
&=e^{2 x}-\ln (3 x+1)+d
\end{aligned}
$$

Since $f(0)=2$,

$$
\begin{gathered}
1-\ln (1)+d=2 \\
d=1 \\
f(x)=e^{2 x}-\ln (3 x+1)+1
\end{gathered}
$$

2. (a) At $A, x=3$

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=3} & =\frac{1}{3} e^{\frac{1}{3} x} \\
& =\frac{1}{3} e^{\frac{1}{3}(3)} \\
& =\frac{1}{3} e
\end{aligned}
$$

When $x=3$,

$$
\begin{aligned}
y & =e^{\frac{1}{3}(3)}+2 \\
& =2+e \\
\therefore & A(3,2+e)
\end{aligned}
$$

Hence, the equation of the tangent is:

$$
\begin{aligned}
& y-(2+e)=\frac{1}{3} e(x-3) \\
& y=\frac{1}{3} e x+2 \\
& \therefore B(0,2)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { Area under the graph } & =\int_{0}^{3} e^{\frac{1}{3} x}+2 d x-\frac{1}{2}(2+2+e)(3) \\
& =\left[3 e^{\frac{1}{3} x}+2 x\right]_{0}^{3}-\frac{3}{2}(e+4) \\
& =\left[3 e^{\frac{1}{3}(3)}+2(3)\right]-\left[3 e^{\frac{1}{3}(0)}+2(0)\right]-\frac{3}{2} e-6 \\
& =3 e+6-3-\frac{3}{2} e-6 \\
& =\left(\frac{\mathbf{3}}{\mathbf{2}} \boldsymbol{e}-\mathbf{3}\right) \text { units }^{\mathbf{2}}
\end{aligned}
$$

(b) When $x=0$,

$$
\begin{aligned}
y & =e^{\frac{1}{3}(0)}+2 \\
& =3
\end{aligned}
$$

Gradient of the tangent when $x=0$,

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=0} & =\frac{1}{3} e^{\frac{1}{3}(0)} \\
& =\frac{1}{3}
\end{aligned}
$$

Gradient of normal $=-3$

$$
\begin{gathered}
\therefore y-3=-3(x-0) \\
\boldsymbol{y}=-\mathbf{3} \boldsymbol{x}+\mathbf{3}
\end{gathered}
$$

3.

$$
\begin{gathered}
y=A-B \cos 4 x-\frac{1}{2} \sin 2 x \\
\frac{d y}{d x}=4 B \sin 4 x-\cos 2 x \quad \frac{d^{2} y}{d x^{2}}=16 B \cos 4 x+2 \sin 2 x \\
\therefore \frac{d^{2} y}{d x^{2}}+4 y=16 B \cos 4 x+2 \sin 2 x+4\left[A-B \cos 4 x-\frac{1}{2} \sin 2 x\right] \\
=12 B \cos 4 x+4 A
\end{gathered}
$$

Hence, comparing coefficients,

$$
A=\frac{1}{4} \quad B=\frac{1}{4}
$$

4. (a)

$$
\begin{aligned}
\int_{0}^{5} f(x) d x & =\int_{0}^{2} f(x) d x+\int_{2}^{5} f(x) d x \\
& =4+12 \\
& =\mathbf{1 6}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{2}\left[f(x)+m x^{2}\right] d x & =\int_{5}^{2} f(x) d x \\
\int_{0}^{2} f(x) d x+\int_{0}^{2} m x^{2} d x & =-\int_{2}^{5} f(x) d x \\
4+\left[\frac{1}{3} m x^{3}\right]_{0}^{2} & =-12 \\
4+\left[\frac{8}{3} m-0\right] & =-12 \\
m & =-\mathbf{6}
\end{aligned}
$$

5. (a) At $P, y=0$,

$$
\begin{aligned}
& 0=\frac{2 x+4}{x-1} \\
& x=-2 \\
& \boldsymbol{P}(-\mathbf{2}, \mathbf{0})
\end{aligned}
$$

At $Q, x=0$,

$$
\begin{aligned}
& y=\frac{2(0)+4}{(0)-1} \\
&=-4 \\
& \boldsymbol{Q}(\mathbf{0},-\mathbf{4})
\end{aligned}
$$

(b)

$$
\begin{align*}
& y=\frac{2 x+4}{x-1} \ldots \ldots(1) \tag{1}\\
\frac{d y}{d x} & =\frac{(x-1)(2)-(2 x+4)(1)}{(x-1)^{2}} \\
= & \frac{2 x-2-2 x-4}{(x-1)^{2}} \\
= & -\frac{6}{(x-1)^{2}}
\end{align*}
$$

At $P, x=-2$,

$$
\begin{aligned}
\left.\frac{d y}{d x}\right|_{x=-2} & =-\frac{6}{(-2-1)^{2}} \\
& =-\frac{2}{3}
\end{aligned}
$$

$$
\therefore \text { Gradient of normal }=\frac{3}{2}
$$

Hence, the equation of the normal is

$$
\begin{aligned}
y-0 & =\frac{3}{2}(x+2) \\
y & =\frac{3}{2} x+3 . . \\
& \therefore \boldsymbol{R}(\mathbf{0}, \mathbf{3})
\end{aligned}
$$

To find S, let Equation (1) = Equation (2),

$$
\begin{aligned}
\frac{2 x+4}{x-1} & =\frac{3}{2} x+3 \\
4 x+8 & =(3 x+6)(x-1) \\
3 x^{2}-3 x+6 x-6-4 x-8 & =0 \\
3 x^{2}-x-14 & =0 \\
(3 x-7)(x+2) & =0 \\
\therefore x=\frac{7}{3} \quad \text { or } \quad x & =-2 \text { (N.A.) }
\end{aligned}
$$

Substitute $x=\frac{7}{3}$ into Equation (2),

$$
\begin{aligned}
& y=\frac{3}{2}\left(\frac{7}{3}\right)+3 \\
&=6 \frac{1}{2} \\
& \therefore S\left(\mathbf{2} \frac{\mathbf{1}}{\mathbf{3}}, \mathbf{6} \frac{\mathbf{1}}{\mathbf{2}}\right)
\end{aligned}
$$

(c) We first breakdown the equation of the curve using long division (or any appropriate methods)

$$
\begin{aligned}
& \frac{2 x+4}{x-1}=2+\frac{6}{x-1} \\
\therefore \text { Shaded region } & =\frac{1}{2}\left(3+6 \frac{1}{2}\right)\left(2 \frac{1}{3}\right)+\int_{2 \frac{1}{3}}^{3} \frac{2 x+4}{x-1} d x \\
& =11 \frac{1}{12}+\int_{2 \frac{1}{3}}^{3} 2+\frac{6}{x-1} d x \\
& =11 \frac{1}{12}+[2 x+6 \ln (x-1)]_{2 \frac{1}{3}}^{3} \\
& =14.849457 \ldots \\
& =\mathbf{1 4 . 8} \text { units }^{2}(\mathbf{3 . s . f .})
\end{aligned}
$$

14 Differentiation \& Integration

14.1 Full Solutions

1. (a)

$$
\begin{aligned}
\frac{d}{d x}\left(\tan ^{3} x\right) & =3 \tan ^{2} x\left(\sec ^{2} x\right) \\
& =3\left(\sec ^{2} x-1\right)\left(\sec ^{2} x\right) \\
& =3 \sec ^{4} x-3 \sec ^{2} x \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \sec ^{4} x-2 \sec ^{2} x d x & =\frac{1}{3} \int_{0}^{\frac{\pi}{4}} 3 \sec ^{4} x-3 \sec ^{2} x d x-\int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x \\
& =\frac{1}{3}\left[\tan ^{3} x\right]_{0}^{\frac{\pi}{4}}-[\tan x]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{3}[1-0]-[1-0] \\
& =-\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\frac{2 x^{3}-20 x^{2}-17 x-10}{\left(x^{2}-4\right)\left(2 x^{2}+1\right)} & =\frac{2 x^{3}-20 x^{2}-17 x-10}{(x-2)(x+2)\left(2 x^{2}+1\right)} \\
& =\frac{A}{x-2}+\frac{B}{x+2}+\frac{C x+D}{2 x^{2}+1}
\end{aligned}
$$

$$
\therefore 2 x^{3}-20 x^{2}-17 x-10=A(x+2)\left(2 x^{2}+1\right)+B(x-2)\left(2 x^{2}+1\right)+(C x+D)(x-2)(x+2)
$$

Let $x=2$,

$$
\begin{aligned}
2(2)^{3}-20(2)^{2}-17(2)-10 & =A(2+2)\left(2(2)^{2}+1\right) \\
A & =-3
\end{aligned}
$$

Let $x=-2$,

$$
\begin{aligned}
2(-2)^{3}-20(-2)^{2}-17(-2)-10 & =B(-2-2)\left(2(-2)^{2}+1\right) \\
B & =2
\end{aligned}
$$

Let $x=0$,

$$
D=0
$$

Let $x=1$,

$$
\begin{gathered}
2(1)^{3}-20(1)^{2}-17(1)-10=-3(1+2)\left(2(1)^{2}+1\right)+2(1-2)\left(2(1)^{2}+1\right)+C(1-2)(1+2) \\
C=4 \\
\therefore \frac{\mathbf{2} \boldsymbol{x}^{\mathbf{3}}-\mathbf{2 0} \boldsymbol{x}^{\mathbf{2}}-\mathbf{1 7} \boldsymbol{x}-\mathbf{1 0}}{\left(\boldsymbol{x}^{\mathbf{2}}-\mathbf{4}\right)\left(\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{1}\right)}=-\frac{\mathbf{3}}{\boldsymbol{x}-\mathbf{2}}+\frac{\mathbf{2}}{\boldsymbol{x}+\mathbf{2}}+\frac{\mathbf{4} \boldsymbol{x}}{\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{1}}
\end{gathered}
$$

(b)

$$
\frac{d}{d x}\left[\ln \left(2 x^{2}+1\right)\right]=\frac{\mathbf{4 x}}{\mathbf{2 x}^{2}+\mathbf{1}}
$$

(c)

$$
\begin{aligned}
\int \frac{2 x^{3}-20 x^{2}-17 x-10}{\left(x^{2}-4\right)\left(2 x^{2}+1\right)} d x & =\int-\frac{3}{x-2}+\frac{2}{x+2}+\frac{4 x}{2 x^{2}+1} d x \\
& =-\mathbf{3} \ln (\boldsymbol{x}-\mathbf{2})+\mathbf{2} \ln (\boldsymbol{x}+\mathbf{2})+\ln \left(\mathbf{2} \boldsymbol{x}^{2}+\mathbf{1}\right)+\boldsymbol{c}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& y=(x+3) \sqrt{2 x-3} \\
& \frac{d y}{d x}= \sqrt{2 x-3}+\frac{1}{2}(2 x-3)^{-\frac{1}{2}}(2)(x+3) \\
&= \sqrt{2 x-3}+\frac{x+3}{\sqrt{2 x-3}} \\
&= \frac{2 x-3+x+3}{\sqrt{2 x-3}} \\
&= \frac{\mathbf{3 x}}{\sqrt{2 \boldsymbol{x}-3}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int \frac{x}{\sqrt{2 x-3}} d x & =\frac{1}{3} \int \frac{3 x}{\sqrt{2 x-3}} d x \\
& =\frac{\mathbf{1}}{\mathbf{3}}(\boldsymbol{x}+\mathbf{3}) \sqrt{\mathbf{2 x - 3}}+\boldsymbol{c}
\end{aligned}
$$

4.

$$
\begin{aligned}
f^{\prime \prime}(x) & =24 \sin 4 x-12 \cos 4 x \\
f^{\prime}(x) & =\int 24 \sin 4 x-12 \cos 2 x d x \\
& =\frac{-24 \cos 4 x}{4}-\frac{12 \sin 2 x}{2}+c \\
& =-6 \cos 4 x-6 \sin 2 x+c
\end{aligned}
$$

Let $f^{\prime}\left(\frac{\pi}{4}\right)=0$,

$$
\begin{aligned}
-6 \cos \left[4\left(\frac{\pi}{4}\right)\right]-6 \sin \left[2\left(\frac{\pi}{4}\right)\right]+c & =0 \\
6-6+c & =0 \\
c & =0
\end{aligned}
$$

$$
\therefore f^{\prime}(x)=-6 \cos 4 x-6 \sin 2 x
$$

$$
f(x)=\int-6 \cos 4 x-6 \sin 2 x d x
$$

$$
=\frac{-6 \sin 4 x}{4}+\frac{6 \cos 2 x}{2}+d
$$

$$
=-\frac{3}{2} \sin 4 x+3 \cos 2 x+d
$$

Let $f\left(\frac{\pi}{4}\right)=1$

$$
\begin{aligned}
&-\frac{3}{2} \sin \left[4\left(\frac{\pi}{4}\right)\right]+3 \cos \left[2\left(\frac{\pi}{4}\right)\right]+d=1 \\
& c=1 \\
& \therefore f(x)=-\frac{3}{2} \sin 4 x+3 \cos 2 x+1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f^{\prime \prime}(x)+4 f(x)= & 24 \sin 4 x-12 \cos 2 x+4\left[-\frac{3}{2} \sin 4 x+3 \cos 2 x+1\right] \\
= & 24 \sin 4 x-12 \cos 2 x-6 \sin 4 x+12 \cos 2 x+4 \\
= & 18 \sin 4 x+4 \\
& \therefore k=18 \quad p=4 \quad q=4
\end{aligned}
$$

15 Kinematics

15.1 Full Solutions

1. (a)

$$
\begin{aligned}
v= & \frac{27}{2(3 t+1)^{2}}-\frac{3 t+1}{2} \\
a & =\frac{d v}{d t} \\
& =-\frac{81}{(3 t+1)^{3}}-\frac{3}{2}
\end{aligned}
$$

Initially, $t=0$,

$$
\begin{aligned}
a & =-\frac{81}{(3(0)+1)^{3}}-\frac{3}{2} \\
& =-\mathbf{8 2} \frac{\mathbf{1}}{\mathbf{2}} \mathbf{m} / \mathrm{s}^{\mathbf{2}}
\end{aligned}
$$

(b) For all $t>0$

$$
\begin{aligned}
& \frac{d v}{d t}=-\frac{81}{(3 t+1)^{3}}-\frac{3}{2}<0 \\
& \therefore \text { Velocity is decreasing }
\end{aligned}
$$

(c) We shall first test for any instantaneous rest, $v=0$

$$
\begin{gathered}
\frac{27}{2(3 t+1)^{2}}=\frac{3 t+1}{2} \\
(3 t+1)^{3}=27 \\
3 t+1=3 \\
t=\frac{2}{3} \\
s=\int \frac{27}{2(3 t+1)^{2}}-\frac{3 t+1}{2} d t \\
=\int \frac{27}{2}(3 t+1)^{-2}-\frac{3}{2} t-\frac{1}{2} d t \\
=\frac{27}{2}\left[\frac{(3 t+1)^{-1}}{(3)(-1)}\right]-\frac{3}{4} t^{2}-\frac{1}{2} t+c \\
=-\frac{9}{2(3 t+1)}-\frac{3}{4} t^{2}-\frac{1}{2} t+c
\end{gathered}
$$

When $t=0, s=0$,

$$
\begin{gathered}
c=\frac{9}{2} \\
\therefore s=-\frac{9}{2(3 t+1)}-\frac{3}{4} t^{2}-\frac{1}{2} t+\frac{9}{2}
\end{gathered}
$$

When $t=\frac{2}{3}$,

$$
\begin{aligned}
s & =-\frac{9}{2\left[3\left(\frac{2}{3}\right)+1\right]}-\frac{3}{4}\left(\frac{2}{3}\right)^{2}-\frac{1}{2}\left(\frac{2}{3}\right)+\frac{9}{2} \\
& =2 \frac{1}{3} \mathrm{~m}
\end{aligned}
$$

When $t=6$,

$$
\begin{aligned}
s & =-\frac{9}{2[3(6)+1]}-\frac{3}{4}(6)^{2}-\frac{1}{2}(6)+\frac{9}{2} \\
& =-25 \frac{14}{19} \mathrm{~m}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \text { Total distance travelled }=2 \frac{1}{3}+2 \frac{1}{3}+25 \frac{14}{19} \\
& \\
& =30 \frac{23}{57} \\
& \begin{aligned}
\therefore \text { Average speed } & =\frac{\left(30 \frac{23}{57}\right)}{6} \\
& =5.067251 \ldots \\
& =\mathbf{5 . 0 7} \mathbf{m} / \mathbf{s}(\mathbf{3 . s . f .})
\end{aligned}
\end{aligned}
$$

2. (a) When $t=0$,

$$
\begin{aligned}
v & =10 e^{-2(0)}-3 \\
& =\mathbf{7} \mathbf{m} / \mathrm{s}
\end{aligned}
$$

(b)

$$
\begin{aligned}
v & =10 e^{-2 t}-3 \\
a & =\frac{d v}{d t} \\
& =-20 e^{-2 t}
\end{aligned}
$$

When $t=1$,

$$
\begin{aligned}
a & =-20 e^{-2(1)} \\
& =-2.706705 \ldots \\
& =-\mathbf{2 . 7 1} \mathbf{m} / \mathrm{s}^{2}(\mathbf{3 . s . f .})
\end{aligned}
$$

(c) At instantaneous rest, $v=0$,

$$
\begin{gathered}
10 e^{-2 t}-3=0 \\
e^{-2 t}=\frac{3}{10} \\
t=-\frac{1}{2} \ln \left(\frac{3}{10}\right) \\
=0.601986 \ldots \\
=0.602 \mathrm{~s}(\mathbf{3 . s . f .})
\end{gathered}
$$

(d)

$$
\begin{aligned}
s & =\int_{0}^{-\frac{1}{2} \ln \left(\frac{3}{10}\right)} 10 e^{-2 t}-3 d t \\
& =\left[-\frac{10}{2} e^{-2 t}-3 t\right]_{0}^{-\frac{1}{2} \ln \left(\frac{3}{10}\right)} \\
& =1.694040 \ldots \\
& =1.69 \mathrm{~m}(3 . \text { s.f. })
\end{aligned}
$$

(e) Note that $10 e^{-2 t}>0$

$$
\therefore v>-3 \text { (shown) }
$$

3. (a) At $A, v=0$,

$$
\begin{aligned}
2 e^{0.1 t}-6 e^{0.1-0.4 t} & =0 \\
e^{0.1 t} & =3 e^{0.1-0.4 t} \\
e^{0.1 t-(0.1-0.4 t)} & =3 \\
e^{0.5 t-0.1} & =3 \\
\therefore \frac{1}{2} t-\frac{1}{10} & =\ln 3 \\
t=2 \ln 3+\frac{1}{5} & (\text { shown })
\end{aligned}
$$

(b)

$$
\begin{aligned}
& v=2 e^{0.1 t}-6 e^{0.1-0.4 t} \\
a & =\frac{d v}{d t} \\
& =0.2 e^{0.1 t}+2.4 e^{0.1-0.4 t}
\end{aligned}
$$

Hence, when $t=2 \ln 3+\frac{1}{5}$

$$
\begin{aligned}
a & =0.2 e^{0.1\left(2 \ln 3+\frac{1}{5}\right)}+2.4 e^{0.1-0.4\left(2 \ln 3+\frac{1}{5}\right)} \\
& =1.270896 \ldots \\
& =\mathbf{1 . 2 7} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}} \quad(\mathbf{3 . s . f .})
\end{aligned}
$$

(c)

$$
\begin{gathered}
v=2 e^{0.1 t}-6 e^{0.1-0.4 t} \\
s=\int 2 e^{0.1 t}-6 e^{0.1-0.4 t} d t \\
=20 e^{0.1 t}+15 e^{0.1-0.4 t}+c
\end{gathered}
$$

When $t=0, s=0$,

$$
\begin{aligned}
& 0=20 e^{0.1(0)}+15 e^{0.1-0.4(0)}+c \\
& c=-\left(20+15 e^{0.1}\right) \\
& \therefore s= 20 e^{0.1 t}+15 e^{0.1-0.4 t}-\left(20+15 e^{0.1}\right)
\end{aligned}
$$

Hence, when $t=2 \ln 3+\frac{1}{5}$,

$$
\begin{aligned}
s & =20 e^{0.1\left(2 \ln 3+\frac{1}{5}\right)}+15 e^{0.1-0.4\left(2 \ln 3+\frac{1}{5}\right)}-\left(20+15 e^{0.1}\right) \\
& =4.805154 \ldots \\
& =4.81 \mathbf{~ m}(3 . s . f .)
\end{aligned}
$$

(d) When $t=5$,

$$
\begin{aligned}
s & =20 e^{0.1(5)}+15 e^{0.1-0.4(5)}-\left(20+15 e^{0.1}\right) \\
& =-1.36 \mathrm{~m}
\end{aligned}
$$

When $t=6$,

$$
\begin{aligned}
s & =20 e^{0.1(6)}+15 e^{0.1-0.4(6)}-\left(20+15 e^{0.1}\right) \\
& =1.37 \mathrm{~m}
\end{aligned}
$$

Since the displacement changes from negative to positive, it passes through O during the 6 th second
4. (a) At instantaneous rest, $v=0$,

$$
\begin{gathered}
2 t^{2}-8 t+6=0 \\
2(t-1)(t-3)=0 \\
\therefore t=\mathbf{1} \quad \text { or } \quad t=\mathbf{3}
\end{gathered}
$$

(b)

$$
\begin{gathered}
v=2 t^{2}-8 t+6 \\
a=\frac{d v}{d t} \\
=4 t-8
\end{gathered}
$$

At minimum velocity, $\frac{d v}{d t}=0$

$$
\begin{aligned}
4 t-8 & =0 \\
t & =2
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Minimum velocity } & =2(2)^{2}-8(2)+6 \\
& =-\mathbf{2} \mathbf{m} / \mathbf{s}
\end{aligned}
$$

\therefore Particle is moving in the opposite direction
(c)

$$
\begin{gathered}
v=2 t^{2}-8 t+6 \\
s=\int 2 t^{2}-8 t+6 d t \\
=2\left(\frac{t^{3}}{3}\right)-8\left(\frac{t^{2}}{2}\right)+6 t+c
\end{gathered}
$$

At $t=2, s=1$,

$$
\begin{aligned}
1 & =2\left(\frac{8}{3}\right)-8\left(\frac{4}{2}\right)+6(2)+c \\
c & =-\frac{1}{3} \\
& \therefore s=-\frac{2}{3} t^{3}-4 t^{2}+6 t-\frac{1}{3}
\end{aligned}
$$

When $t=0$,

$$
s=-\frac{1}{3}
$$

When $t=1$,

$$
s=2 \frac{1}{3}
$$

When $t=2$,

$$
s=-\frac{1}{3}
$$

When $t=5$,

$$
\begin{aligned}
& s=13 \\
& \text { Average speed }=\frac{\frac{1}{3}+\left(2 \frac{1}{3} \times 2\right)+\left(\frac{1}{3} \times 2\right)+13}{5} \\
&=\mathbf{3} \frac{\mathbf{1 1}}{\mathbf{1 5}} \mathbf{m} / \mathrm{s}
\end{aligned}
$$

