

"What one man calls God, another calls the laws of physics."

-Nikola Tesla

TOPIC 13: LIGHT

CHAPTER ANALYSIS

TIME

WEIGHTAGE

- 3 **big** concepts
- Reflection. Refraction, Lens
- 3 difficult concepts
- Principle of Reversibility, Total Internal Reflection, Ray Diagrams
- Will always be tested
- Practicing and learning to draw ray diagrams will be very important

Constitute to around 5% of marks for past 5 year papers

KEY CONCEPT

REFLECTION LAW OF REFLECTION RAY DIAGRAM & PLANE MIRROR IMAGE

LAWS OF REFLECTION

LAW OF REFLECTION

1) The incident ray, the reflected ray, and the normal at the point of incidence all lie on the same plane.

2) The angle of incidence, i, is equal to the angle of reflection, r.

Object

RAY DIAGRAM

STEP 2

STEP 1

Draw light rays from image to the eyes. (Dotted lines in virtual plane and solid lines in for outside mirror.)

STEP BY STEP GUIDE FOR RAY DIAGRAM

Locate the image. It will be the same distance from the mirror as the object's

distance from mirror.

<u>STEP 3</u>

Draw light ray from object to mirror, meeting at the reflected rays.

<u>STEP 4</u>

Add in the arrows if you haven't & draw the normal at the point of reflection.

Image

RAY DIAGRAM

CHARACTERISTICS OF PLANE MIRROR IMAGE

Images in a plane mirror are:

- Image is **virtual.**
- Image is **upright**.
- Image is **same size** as object.
- Image is **laterally inverted**.

- Image will be **same distance** from the mirror as the object is from the mirror.

KEY CONCEPT

REFRACTION LAW OF REFRACTION REFRACTIVE INDEX

WHY DO LIGHT RAYS REFRACT?

WHY DO LIGHT RAYS UNDERGO REFRACTION?

Light rays bend due to the **difference in speed of light** in different optical mediums.

IMAGINE THIS SCENARIO

You are trying to get from point A to point B. You walk faster on land than swim in water.

What path will allow you to reach point B in the shortest amount of time?

You will not just simply travel in a straight line because that means spending an equal amount of time in water and on land when you travel faster on land.

Given that you walk faster on land, you would cut short the distance you swim in water and attempt to get on land as soon as possible. You will probably travel in a path as shown above.

Light behaves in the same way, taking the fastest path.

Light rays bend due to the difference in speed of light in different mediums.

LAW OF REFRACTION

	Less dense to denser medium	Denser to less dense medium		
Speed of light	Decreases	Increases		
Light ray	Towards normal	Away from normal		
Diagram	Optically less dense medium Optically dense medium Bends towards normal	Optically denser medium Optically less dense medium Bends away from normal		

*See if you are able to visualise the example from the previous page to the 2 refraction diagrams shown here. (*Strongly suggest you understand this instead of memorizing.*)

DARRELL ER (COPYRIGHTED)

LAW OF REFRACTION

- 1) The incident ray, the refracted ray and the normal at the point of incidence all lie in the same plane.
- 2) For light passing through any two mediums, the ratio of **sin i / sin r** is a constant (refractive index).

BENDING OF LIGHT RAYS

When light travel from a **less dense** medium to a **denser** medium, the refracted ray will **bend towards** the normal.

When light travel from a **denser** medium to a **less dense** medium, the refracted ray will **bend away** from the normal.

REFRACTIVE INDEX

FORMULAS FOR REFRACTIVE INDEX

n = **sin i** / **sin r**, where i is angle of incidence & r is angle of refraction.

n = speed of light in vacuum* (c) / speed of light in medium (v)

*speed of light in vacuum is 3 x 10⁸ ms⁻¹

Note that refractive index, n, should never be smaller than value 1.

PRINCIPLE OF REVERSIBILITY

DARRELL ER (COPYRIGHTED)

PRINCIPLE OF REVERSIBILITY

The principle of reversibility states that **light will follow the** same path even if its direction of travel is reversed.

Given that,

n = sin i / sin r

But if we reverse the light's direction,

n = sin r / sin i

(due to principle of reversibility)

The **rule of thumb** is to make sure **value of n is always bigger than 1**.

Use **n** = **sin r / sin i** (**principle of reversibility**) if the light ray is traveling from denser to less dense medium.

The best way to approach this is:

n = sin (angle in air) / sin (angle in medium)

Please note that this for 'O' Levels without using Snell's Law (as it is not within syllabus).

KEY CONCEPT

TOTAL INTERNAL REFLECTION CRITICAL ANGLE APPLICATION OF TIR

TOTAL INTERNAL REFLECTION

Light ray is travelling from optically denser medium to optically less dense medium.

Light ray bends away from normal.

Light ray bends away from normal until it at a refraction of 90°.

This is your critical angle.

Now that the angle of incidence exceeds the critical angle, light ray bend inwards.

Total internal reflection occurs.

TOTAL INTERNAL REFLECTION

As angle of incidence increases, the angle of refraction also increases.

Total internal reflection occurs once the angle of incidence exceeds the **critical angle**, causing the light ray to not leave the optically denser medium and instead, reflect internally.

Critical angle, c, is defined as the angle of incidence in the optically denser medium for which angle of refraction in the optically less dense medium is exactly 90°.

FORMULA:

sin c = 1 / n

where n is refractive index.

Hence the 2 conditions for total internal reflections are:

1) Light ray must be travelling from optically denser medium to an optically less dense medium (so that it bends away from the normal until it hits 90°)

2) angle of incidence must be greater than the critical angle

<u>Applications:</u> - Glass Prisms - Optic Fibre

TOTAL INTERNAL REFLECTION

OPTIC FIBRE

Optic fibres are made of glass and transmit light from one point to another.

The light ray entering the pipe does not exit but is constantly undergoing total internal reflection until it reaches the other end of the fibre.

This technology allows 5 times as much information to be carried across transmission lines and the amount of information loss is also greatly reduced.

This is how our internet speed and Wifi has great improved over the years!

KEY CONCEPT

LENS CONVERGING & DIVERGING LENS RAY DIAGRAMS

<u>LENSES</u>

A lens is a piece of transparent glass that have a curved surface.

Converging lens:

THIN CONVERGING LENS

Key Terminologies:

Optical Centre, C

Midway point between the lens surfaces on its principal axis - rays passing through optical centre do not deviate.

Principal Axis

Line passing through the optical centre of the lens and perpendicular to the plane of the lens.

Principal Focus, Focal point F

Point on the principal axis to which an incident beam parallel to the principal axis converges to.

<u>Focal Length, f</u>

Distance between its optical centre and principal focus

Focal Plane

Vertical plane which passes through the principal focus and is perpendicular to the principal axis.

THIN CONVERGING LENS

How to locate image using ray diagrams

The spot where **2 light rays intersect** is where the image will be formed.

You will only need **2 out of 3 light rays** to locate the image.

Ray 1:

Travel parallel to principal axis \rightarrow hits the lens \rightarrow cuts through focal point, F

Ray 2:

Straight line that cuts through optical centre, C

Ray 3:

Passes through principal focus F \rightarrow hit the lens \rightarrow travel parallel to principle axis

*I've rearrange the sequence of the ray diagrams, original textbook version is on the next page!

Uses	- object lens of a telescope	- camera - eye	- photocopier making same-sized copy	 projector photograph enlarger 	- to produce a parallel beam of light, e.g. a spotlight	- magnifying glass
Image distance (v)	v = f - opposite side of the lens	f < v < 2f - opposite side of the lens	v = 2f - opposite side of the lens	 v > 2f opposite side of the lens 	image at infinitysame side of the lens	 image is behind the object same side of the lens
Type of image	- inverted - real - diminished	- inverted - real - diminished	- inverted - real - same size	- inverted - real - magnified	- upright - virtual - magnified	- upright - virtual - magnified
Ray diagram	parallel rays from a distant object	object	object F 2F image	object F 2F image	infinity object	image object F F
Object distance (<i>u</i>)	8 " "	u > 2f	u = 2f	f <u<2f< th=""><th>u = f</th><th>u < f</th></u<2f<>	u = f	u < f

For more notes & learning materials, visit: <u>www.overmugged.com</u>

'O' levels crash course program

III

OVERMUGGED

Professionally designed crash course to help you get a **condensed revision** before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in June 2021 and last till Oct 2021.

Pre-register now on our <u>website</u> and secure your slots!

Darrell Er (Private tutor with **8 years** of experience)

8777 0921 (Whatsapp)

@DarrellEr
(telegram username)

