SHALYN TAY COPYRIGHTED ©

A LEVEL H2 MATHEMATICS GRAPHING TECHNIQUES

MASTERY

- Sketch graphs with and without G.C.
- Conic graphs
- Parametric curves
- Transformation of graphs

CHAPTER ANALYSIS

- Graphical sketching is critical
- Understanding is useful in functions, differentiation, integration and their applications

WEIGHTAGE

• Appears every year, at least 1 question

• Typically constitutes less than 5% of final grade alone, but is commonly integrated in other chapters

GRAPHING TECHNIQUES PART I

STANDARD GRAPHS CONICS

Characteristics of Graphs

When sketching a graph, it is necessary to indicate the following:

- 1. X- and Y- Axes
- 2. Origin
- 3. Co-ordinates of Stationary Points
- 4. Co-ordinates of Intercepts
- 5. Equations of Asymptotes
- 6. Co-ordinates of End-Points
- 7. Equation of Graph

You may use the following acronym to help you with curve sketching:

S		Α
Shape / Stationary Point	Intercepts	Asymptotes

Standard Graphs

Intercepts

To find y-intercept: sub x = 0 and solve for y To find x-intercept: sub y = 0 and solve for x

Stationary Points

Stationary	Stationary Turning Point		Deint of Infloation	
Point	Maximum	Minimum		nnection
Shape of Curve				
$\frac{dy}{dx}$	+ 0 -	- 0 +	+ 0 +	- 0 -
$\frac{d^2y}{dx^2}$	≤ 0	≥ 0	0	0

<u>Asymptotes</u>

For proper function $f(x) = \frac{A(x)}{B(x)}$, vertical asymptote can be found by letting Q(x) = 0

For improper function $f(x) = \frac{A(x)}{B(x)}$, carry out long division to express it as $f(x) = C(x) + \frac{D(x)}{B(x)}$ where $\frac{D(x)}{B(x)}$ is a proper function. If C(x) = c where c is a constant, then C(x) is the horizontal asymptote. If C(x) = cx + d, then C(x) is the oblique asymptote.

Cartesian Equations

Expresses the relationship between x and y directly.

Parametric Equations

Expresses the relationship between x and y in terms of a parameter, t. You should be able to directly plot the graph from your G.C. by changing the mode to '*parametric*'.

Conversion from Parametric to Cartesian

To convert equations from parametric to cartesian, we must eliminate the parameter using substitution.

i.e. for $x = t^2 + 2$ and y = 3tCartesian equation: $x = (\frac{y}{3})^2 + 2$

Points & Lines of Symmetry

A graph can be symmetric to the:

Conics – Circles & Ellipses

<u>Circles</u>

General Form
$$x^2 + y^2 + ax + by + c = 0$$

Standard Form

$$(x-h)^2+(y-k)^2=r^2$$
, where $r \neq 0$

<u>Ellipses</u>

No Asymptotes

Conics – Hyperbolas

Left-Right Hyperbola

Top-Bottom Hyperbola

Equation of Asymptotes: $y = \pm \frac{b}{a}(x - h) + k$

Rectangular Hyperbola

Conics – Special Hyperbolas

Rectangular Hyperbola

Hyperbola with an Oblique and Vertical Asymptote

GRAPHING TECHNIQUES PART II

TRANSFORMATION OF GRAPHS: TRANSLATION SCALING & REFLECTION MODULUS FUNCTIONS DERIVATIVE FUNCTIONS RECIPROCAL FUNCTIONS

Order of Transformations

You may find the following acronym useful in helping you remember the order of transformations:

Riley The Salesman Roasts Some Turkey

	х			У	
R	T	S	R	S	T
Reflect	Translate	Scale	Reflect	Scale	Translate

Transformation of Graphs

Translation in the direction of an axis is to move the graph in the direction of the axis (i.e. up, down, left or right) without changing its shape or size.

Replace x with $(x - a)$ y = f $(x - a)$	Translation of <i>a</i> units in the positive <i>x</i> direction	Graph moves right
Replace x with $(x + a)$ y = f $(x + a)$	Translation of <i>a</i> units in the negative <i>x</i> direction	Graph moves left
Replace y with $(y - a)$ y = f(x) + a	Translation of <i>a</i> units in the positive <i>y</i> direction	Graph moves up
Replace y with $(y + a)$ y = f $(x) - a$	Translation of <i>a</i> units in the negative <i>y</i> direction	Graph moves down

Scaling parallel to an axis changes the size of the curve, stretching it.

Replace x with $\frac{x}{a}$ y = $f(\frac{x}{a})$	Scaling parallel to the x-axis by a factor of <i>a</i>	Remember to change the coordinates and asymptotes according
Replace y with $\frac{y}{a}$ y = a f (x)	Scaling parallel to the y-axis by a factor of <i>a</i>	to the new equation

Reflection

Replace x with -x y = f(-x)	Reflection in the y-axis	Flip left/right
Replace <i>y</i> with - <i>y</i> <i>y</i> = - <i>f</i> (<i>x</i>)	Reflection in the x-axis	Flip up/down

From y = f(x) to y = f(|x|)

Modulus Functions

To obtain graph of y = |f(x)| from y = f(x):

- 1. Keep part of graph above the x-axis
- 2. Flip up (or reflect in the x-axis) the part of the graph below the x-axis

To obtain graph of y = f(|x|) from y = f(x):

- 1. Keep part of the graph where $x \ge 0$
- 2. Reflect part from (1) in the y-axis so the graph is symmetrical about the y-axis

Derivative Functions

From y = f(x) to y = f'(x):

y = f(x)	y = f'(x)
Stationary Point at <i>x</i> = <i>a</i>	x-intercept (a, 0)
Strictly increasing $\left(\frac{dy}{dx} > 0\right)$	Above x-axis
Strictly decreasing $\left(\frac{dy}{dx} < 0\right)$	Below x-axis
Gradient or $\frac{dy}{dx}$ getting steeper	Graph is increasing
Gradient or $\frac{dy}{dx}$ getting less steep	Graph is decreasing
Vertical Asymptote <i>x = a</i>	Vertical Asymptote <i>x = a</i>
Horizontal Asymptote <i>y</i> = <i>a</i>	Horizontal Asymptote <i>y</i> = 0
Oblique Asymptote <i>y</i> = <i>ax</i> + <i>b</i>	Horizontal Asymptote <i>y</i> = <i>a</i>

From y = f(x) to y = f'(x):

Reciprocal Functions

From y = f(x) to $y = \frac{1}{f(x)}$:

y = f(x)	$y = \frac{1}{f(x)}$
f(x) > 0	$\frac{1}{f(x)} > 0$
f(x) < 0	$\frac{1}{f(x)} < 0$
f (x) increases	$\frac{1}{f(x)}$ decreases
f (x) decreases	$\frac{1}{f(x)}$ increases
x-intercept (a, 0)	Vertical Asymptote at <i>x = a</i>
Vertical Asymptote <i>x = a</i>	x-intercept (a, 0)
Horizontal Asymptote y = a , $a eq 0$	Horizontal Asymptote $\mathbf{y}=rac{1}{a}$, $a eq 0$
Oblique Asymptote <i>y = ax + b</i>	Horizontal Asymptote y = 0
Maximum Point (a, b), $b \neq 0$	Minimum Point (a, $\frac{1}{b}$), b $\neq 0$
Minimum Point (a, b), $\mathrm{b} eq 0$	Maximum Point (a, $\frac{1}{b}$), b $\neq 0$
$f(x) \to \infty$	$\frac{1}{f(x)} \to 0$
$f(x) \rightarrow 0$	$\frac{1}{f(x)} \to \infty$

From y = f(x) to y = f'(x):

For more notes & learning materials, visit: <u>www.overmugged.com</u>

'A' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'A' Levels!

The 6 hour intensive session focuses on going through key concepts and identifying commonly tested questions.

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam.

The crash courses will begin in June 2021 and last till Oct 2021.

Sign up now on our website or drop me a PM directly to secure your slots!

Shalyn Tay

82014166 (Whatsapp)

<u>@shalyntay</u> (telegram username)

