A LEVEL
 H2 MATHEMATICS GRAPHING TECHINIQUES

MASTERY

CHAPTER ANALYSIS

- Sketch graphs with and without G.C.
- Conic graphs
- Parametric curves
- Transformation of graphs
- Graphical sketching is critical
- Understanding is useful in functions, differentiation, integration and their applications
- Appears every year, at least 1 question
- Typically constitutes less than 5% of final grade alone, but is commonly integrated in other chapters

GRAPHING TECHNIQUES PART I

STANDARD GRAPHS CONICS

Standard Graphs

Intercepts

To find y -intercept: sub $\mathrm{x}=0$ and solve for y
To find x-intercept: sub $y=0$ and solve for x

Stationary Points

Stationary Point	Turning Point		Point of Inflection	
	Maximum	Minimum		
Shape of Curve				
$\frac{d y}{d x}$				
$\frac{d^{2} y}{d x^{2}}$	≤ 0	≥ 0	0	0

Asymptotes

> For proper function $f(x)=\frac{A(x)}{B(x)}$, vertical asymptote can be found by letting $Q(x)=0$
> For improper function $f(x)=\frac{A(x)}{B(x)}$, carry out long division to express it as $f(x)=C(x)+\frac{D(x)}{B(x)}$ where $\frac{D(x)}{B(x)}$ is a proper function. If $C(x)=c$ where c is a constant, then $C(x)$ is the horizontal asymptote. If $C(x)=c x+d$, then $C(x)$ is the oblique asymptote.

Points \& Lines of Symmetry

A graph can be symmetric to the:

Circles

Ellipses

General Form
$b^{2} x^{2}+a^{2} y^{2}+c x+d y+e=0$, where $a \neq 0, b \neq 0, a \neq b$

No Asymptotes

$$
\begin{gathered}
\text { General Form } \\
x^{2}+y^{2}+a x+b y+c=0
\end{gathered}
$$

$$
b^{2} x^{2}+a^{2} y^{2}+c x+d y+e=0, \text { where } a \neq 0, b \neq 0, a \neq b
$$

| Standard Form |
| :---: | :---: |
| $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1$ |

Left-Right Hyperbola

Left-Right Hyperbola

Top-Bottom Hyperbola

Equation of Asymptotes:

$$
y= \pm \frac{b}{a}(x-h)+k
$$

General Form

$$
b^{2} x^{2}-a^{2} y^{2}+c x+d y+e=0, \text { where } a \neq 0, b \neq 0
$$

Standard Form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Top-Bottom Hyperbola

General Form

$$
a^{2} y^{2}-b^{2} x^{2}+c x+d y+e=0, \text { where } a \neq 0, b \neq 0
$$

Standard Form

$$
\frac{(y-k)^{2}}{b^{2}}-\frac{(x-h)^{2}}{a^{2}}=1
$$

Rectangular Hyperbola

Horizontal Asymptote: $y=k=\frac{a}{c}$
Vertical Asymptote: $\mathrm{x}=h=-\frac{d}{c}$

Oblique-Vertical Asymptote

Hyperbola

Oblique Asymptote: $y=s x+t$
Vertical Asymptote: $\mathrm{x}=h=-\frac{e}{d}$

Conics - Special Hyperbolas

Rectangular Hyperbola

Improper Form

$$
y=\frac{a x+b}{c x+d}=\frac{\text { linear }}{\text { linear }}
$$

Proper Form

$$
y=k+\frac{m}{x-h}, \text { where } k=\frac{a}{c} \text { and } \mathrm{h}=-\frac{d}{c}
$$

Hyperbola with an Oblique and Vertical Asymptote

Improper Form
$y=\frac{a x^{2}+b x+c}{d x+e}=\frac{\text { quadratic }}{\text { linear }}$

Proper Form

$y=s x+t+\frac{n}{x-h}$, where $\mathrm{h}=-\frac{e}{d}$

TRANSFORMATION OF GRAPHS:

TRANSLATION SCALING \& REFLECTION
MODULUS FUNCTIONS
DERIVATIVE FUNCTIONS
RECIPROCAL FUNCTIONS

Transformation of Graphs

Translation in the direction of an axis is to move the graph in the direction of the axis (i.e. up, down, left or right) without changing its shape or size.

Replace x with $(x-a)$ $y=f(x-a)$	Translation of a units in the positive x direction	Graph moves right
Replace x with $(x+a)$ $y=f(x+a)$	Translation of a units in the negative x direction	Graph moves left
Replace y with $(y-a)$ $y=f(x)+a$	Translation of a units in the positive y direction	Graph moves up
Replace y with $(y+a)$ $y=f(x)-a$	Translation of a units in the negative y direction	Graph moves down

Scaling parallel to an axis changes the size of the curve, stretching it.

Replace x with $\frac{x}{a}$ $y=f\left(\frac{x}{a}\right)$	Scaling parallel to the x-axis by a factor of a	Remember to change the coordinates and asymptotes according to the new equation
Replace y with $\frac{y}{a}$ $y=a f(x)$	Scaling parallel to the y-axis by a factor of a	

Reflection

Replace x with $-x$ $y=f(-x)$	Reflection in the y-axis	Flip left/right
Replace y with $-y$ $y=-f(x)$	Reflection in the x-axis	Flip up/down

From $y=f(x)$ to $\boldsymbol{y}=|\boldsymbol{f}(\boldsymbol{x})|$
$y=f(x)$

From $y=f(x)$ to $\boldsymbol{y}=\boldsymbol{f}(|\boldsymbol{x}|)$

Modulus Functions

To obtain graph of $\boldsymbol{y}=|\boldsymbol{f}(\boldsymbol{x})|$ from $y=f(x)$:

1. Keep part of graph above the x-axis
2. Flip up (or reflect in the x-axis) the part of the graph below the x-axis

To obtain graph of $\boldsymbol{y}=\boldsymbol{f}(|\boldsymbol{x}|)$ from $y=f(x)$:

1. Keep part of the graph where $x \geq 0$
2. Reflect part from (1) in the y-axis so the graph is symmetrical about the y-axis

Derivative Functions

From $y=f(x)$ to $\boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$:

$$
\text { From } y=f(x) \text { to } \boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x}) \text { : }
$$

$$
y=f(x) \quad y=f^{\prime}(x)
$$

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$
Stationary Point at $x=a$	x-intercept (a, 0)
Strictly increasing $\left(\frac{d y}{d x}>0\right)$	Above x-axis
Strictly decreasing $\left(\frac{d y}{d x}<0\right)$	Below x-axis
Gradient or $\frac{d y}{d x}$ getting steeper	Graph is increasing
Gradient or $\frac{d y}{d x}$ getting less steep	Graph is decreasing
Vertical Asymptote $x=a$	Vertical Asymptote $x=a$
Horizontal Asymptote $y=a$	Horizontal Asymptote $y=0$
Oblique Asymptote $y=a x+b$	Horizontal Asymptote $y=a$

Reciprocal Functions

From $y=f(x)$ to $\boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{f}(x)}$:

$$
\text { From } y=f(x) \text { to } \boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x}):
$$

$y=f(x)$	$y=\frac{1}{f(x)}$
$f(x)>0$	$\frac{1}{f(x)}>0$
$f(x)<0$	$\frac{1}{f(x)}<0$
$f(x)$ increases	$\frac{1}{f(x)}$ decreases
$f(x)$ decreases	$\frac{1}{f(x)}$ increases
x-intercept ($\mathrm{a}, 0$)	Vertical Asymptote at $x=a$
Vertical Asymptote $x=a$	x-intercept ($\mathrm{a}, 0$)
Horizontal Asymptote $y=a, a \neq 0$	Horizontal Asymptote $\mathrm{y}=\frac{1}{a}, a \neq 0$
Oblique Asymptote $y=a x+b$	Horizontal Asymptote $y=0$
Maximum Point (a, b), $\mathrm{b} \neq 0$	Minimum Point ($\mathrm{a}, \frac{1}{b}$), $\mathrm{b} \neq 0$
Minimum Point $(a, b), b \neq 0$	Maximum Point ($\mathrm{a}, \frac{1}{b}$) , b $\neq 0$
$f(x) \rightarrow \infty$	$\frac{1}{f(x)} \rightarrow 0$
$f(x) \rightarrow 0$	$\frac{1}{f(x)} \rightarrow \infty$

For more notes \& learning materials, visit:

www.overmugged.com

' A ' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' A ' Levels!

The 6 hour intensive session focuses on going through key concepts and identifying commonly tested questions.
Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam.

The crash courses will begin in June 2021 and last till Oct 2021.

IG handle:
@overmugged

Join our telegram
channel:
@overmugged

Need help? Contact me:

Shalyn Tay
82014166 (Whatsapp)
@shalyntay
(telegram username)

Sign up now on our website or drop me a PM directly to secure your slots!

