

MASTERY

- · Relatively straight forward chapter
- 2 **key** concepts

CHAPTER ANALYSIS

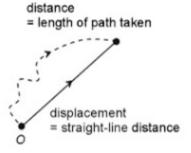
 Application of differentiation and integration to problems involving displacement, velocity and acceleration of a particle moving in a straight line

EXAM

- Concepts usually tested as a stand-alone topic
- Easy to make mistakes if students are not careful of when to differentiate or integrate

WEIGHTAGE

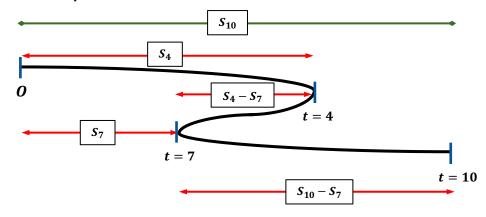
- High overall weightage
- Tested consistently every year
- Typically, an 10m question, 1 question in one of the papers


KEY CONCEPT

Kinematics Quantities Relationship between the Quantities

Kinematics Quantities

Distance & Displacement



- Distance
 - o The length of the path travelled by an object or a particle
 - o Scalar Quantity, completely defined by its magnitude
- Displacement
 - o The straight-line distance and direction of an object or a particle
 - o **Vector Quantity**, defined by its magnitude and direction

$$s = \int v \, dt$$

Path Diagram

Distance & Displacement

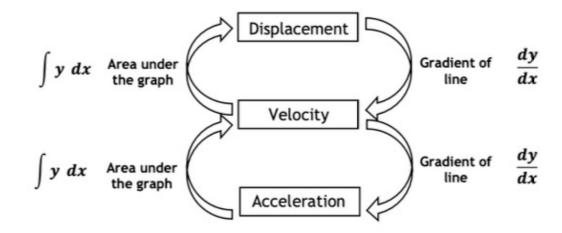
Displacement is always calculated with respect to the origin

- Distance: $S_4 + (S_4 S_7) + (S_{10} S_7)$
- Displacement: S_{10}

Kinematics Quantities

Speed & Velocity

- Speed
 - \circ The <u>rate of change</u> of distance travelled by an object or a particle travels with respect to time, t
 - o **Scalar Quantity**, completely defined by its magnitude
- Velocity
 - \circ The <u>rate of change</u> of displacement of an object or a particle with respect to time, t
 - o Vector Quantity, defined by its magnitude and direction


$$v = \frac{ds}{dt} \qquad \qquad v = \int a \, dt$$

Acceleration

- Acceleration
 - \circ The <u>rate of change</u> of velocity of an object or a particle with respect to time, t
 - o **Vector Quantity**, defined by its magnitude and direction

$$a = \frac{dv}{dt} \qquad a = \frac{d^2s}{dt^2}$$

Relationship Diagram

Important Phrases

Phrase	Implication
Instantaneous rest	v=0, change in direction
nth second	Between the $(n-1)$ th and the n th second

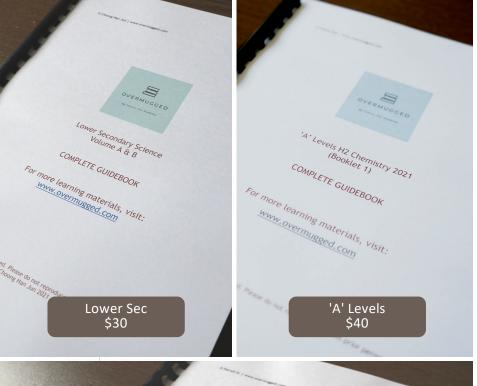
About Us

OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on <u>IG</u> and join our <u>Telegram channel</u> to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Kaiwen's group tuition, contact him at:


Whatsapp: 9721 6433

Telegram: @ongkw28

Website: https://www.overmugged.com/kai-wen

For more free notes & learning materials, visit: www.overmugged.com

'O' Levels \$40/\$50

OVERMUGGED's Curated Notes

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a highly condensed booklet that covers all content within the MOE syllabus.

This booklet consist of key concept breakdowns, worked examples and exam tips/ techniques to required to ace your exams.

Get an upgraded version of the free notes and supercharge your revision!

Purchase here.

Crash courses

Check out our upcoming crash courses at:

https://www.overmugged.com/crashcourses

'O' Levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- A-Math
- English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)