"What one man calls God, another calls the laws of physics."
-Nikola Tesla

TOPIC 12:

TIME

- 3 big concepts
- Reflection. Refraction, Lens
- 3 difficult concepts
- Principle of Reversibility, Total Internal Reflection, Ray Diagrams
- Will always be tested
- Practicing and learning to draw ray diagrams will be very important
- Medium - Heavy overall weightage
- Constitute to around $\mathbf{5 \%}$ of marks for past 5 year papers

REFLECTION LAW OF REFLECTION RAY DIAGRAM \& PLANE MIRROR IMAGE

LAWS OF REFLECTION

LAW OF REFLECTION

1) The incident ray, the reflected ray, and the normal at the point of incidence all lie on the same plane.
2) The angle of incidence, i, is equal to the angle of reflection, r.

Mirror reflection

RAY DIAGRAM

STEP 2

Draw light rays from image to the eyes. (Dotted lines in virtual plane and solid lines in for outside mirror.)

STEP 3

Draw light ray from object to mirror, meeting at the reflected rays.

STEP 4

Add in the arrows if you haven't \& draw the normal at the point of reflection.

RAY DIAGRAM

CHARACTERISTICS OF PLANE MIRROR IMAGE

Images in a plane mirror are:

- Image is virtual.
- Image is upright.
- Image is same size as object.
- Image is laterally inverted.
- Image will be same distance from the mirror as the object is from the mirror.

REFRACTION LAW OF REFRACTION REFRACTIVE INDEX

WHY DO LIGHT RAYS REFRACT?

WHY DO LIGHT RAYS UNDERGO REFRACTION?

Light rays bend due to the difference in speed of light in different optical mediums.

IMAGINE THIS SCENARIO

You are trying to get from point A to point B. You walk faster on land than swim in water.

What path will allow you to reach point B in the shortest amount of time?

You will not just simply travel in a straight line because that means spending an equal amount of time in water and on land when you travel faster on land.

Given that you walk faster on land, you would cut short the distance you swim in water and attempt to get on land as soon as possible. You will probably travel in a path as shown above.

Light behaves in the same way, taking the fastest path.
Light rays bend due to the difference in speed of light in different mediums.

LAW OF REFRACTION

	Less dense to denser medium	Denser to less dense medium	
Speed of light	Decreases	Increases	
Light ray	Towards normal		Away from normal
Diagram			

[^0] diagrams shown here. (Strongly suggest you understand this instead of memorizing.)

LAW OF REFRACTION

1) The incident ray, the refracted ray and the normal at the point of incidence all lie in the same plane.
2) For light passing through any two mediums, the ratio of $\boldsymbol{\operatorname { s i n }} \mathbf{i} / \boldsymbol{\operatorname { s i n }} \mathbf{r}$ is a constant (refractive index).

BENDING OF LIGHT RAYS

When light travel from a less dense medium to a denser medium, the refracted ray will bend towards the normal.

When light travel from a denser medium to a less dense medium, the refracted ray will bend away from the normal.

REFRACTIVE INDEX

Medium	Refractive index, \mathbf{n}
Vacuum	1.00
Air	1.003
Water	1.33
Glass	1.50
Diamond	2.42

. 42

FORMULAS FOR REFRACTIVE INDEX

$\mathbf{n}=\boldsymbol{\operatorname { s i n }} \mathbf{i} / \boldsymbol{\operatorname { s i n }} \mathbf{r}$, where i is angle of incidence \& r is angle of refraction.
n = speed of light in vacuum* (c) / speed of light in medium (v)
*speed of light in vacuum is $3 \times 10^{8} \mathrm{~ms}^{-1}$

PRINCIPLE OF REVERSIBILITY

PRINCIPLE OF REVERSIBILITY

The principle of reversibility states that light will follow the same path even if its direction of travel is reversed.

Given that,

$$
n=\sin i / \sin r
$$

But if we reverse the light's direction,

$$
n=\sin r / \sin i
$$

(due to principle of reversibility)

The rule of thumb is to make sure value of \mathbf{n} is always bigger than 1.

Use $\mathbf{n}=\sin \mathbf{r} / \sin \mathbf{i}$ (principle of reversibility) if the light ray is traveling from denser to less dense medium.

The best way to approach this is:
$n=\sin$ (angle in air) / sin (angle in medium)

TOTAL INTERNAL REFLECTION CRITICAL ANGLE

||

TOTAL INTERNAL REFLECTION

Light ray bends away from normal until it at a refraction of 90°.

This is your critical angle.
Now that the angle of incidence exceeds the critical angle, light ray bend inwards.

Total internal reflection occurs.

TOTAL INTERNAL REFLECTION

As angle of incidence increases, the angle of refraction also increases.

Total internal reflection occurs once the angle of incidence exceeds the critical angle, causing the light ray to not leave the optically denser medium and instead, reflect internally.

Critical angle, \mathbf{c}, is defined as the angle of incidence in the optically denser medium for which angle of refraction in the optically less dense medium is exactly 90°.

FORMULA

$$
\sin c=1 / n
$$

where n is refractive index.

Hence the 2 conditions for total internal reflections are:

1) Light ray must be travelling from optically denser medium to an optically less dense medium (so that it bends away from the normal until it hits 90°)
2) angle of incidence must be greater than the critical angle

Applications:

- Glass Prisms
- Optic Fibre

LENS
 CONVERGING \& DIVERGING LENS RAY DIAGRAMS

THIN CONVERGING LENS

Key Terminologies:

Optical Centre, C

Midway point between the lens surfaces on its principal axis rays passing through optical centre do not deviate.

Principal Axis

Line passing through the optical centre of the lens and perpendicular to the plane of the lens.

Principal Focus, Focal point F

Point on the principal axis to which an incident beam parallel to the principal axis converges to.

Focal Length, f
Distance between its optical centre and principal focus

Focal Plane

Vertical plane which passes through the principal focus and is perpendicular to the principal axis.

THIN CONVERGING LENS

How to locate image using ray diagrams

The spot where $\mathbf{2}$ light rays intersect is where the image will be formed.

You will only need $\mathbf{2}$ out of $\mathbf{3}$ light rays to locate the image.

Ray 1:

Travel parallel to principal axis \rightarrow hits the lens \rightarrow cuts through focal point, F

Ray 2:
Straight line that cuts through optical centre, C
Ray 3:
Passes through principal focus $F \rightarrow$ hit the lens \rightarrow travel parallel to principle axis

	$\begin{aligned} & \text { W } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \frac{0}{0} \\ & \stackrel{y}{0} \\ & \frac{1}{0} \\ & \hline \end{aligned}$					
	$\stackrel{9}{\circ}$							
$\\|$	Ray diagram							
19	$\begin{aligned} & \frac{ \pm}{0} \\ & \frac{0}{5} \\ & \frac{0}{0} \frac{0}{5} \end{aligned}$	$\begin{aligned} & 8 \\ & 11 \\ & 2 \end{aligned}$	$\stackrel{4}{\sim}$	$\begin{aligned} & \stackrel{4}{7} \\ & 11 \\ & > \end{aligned}$	$\begin{aligned} & \stackrel{N}{V} \\ & \stackrel{2}{V} \\ & 4 \end{aligned}$	$\stackrel{4}{11}$	$\begin{aligned} & 4 \\ & \stackrel{V}{2} \end{aligned}$	

IG handle:
@overmugged

Darrell Er

(Private tutor with 8
years of experience)
87770921
(Whatsapp)
@DarrellEr
(telegram username)

Pre-register now on our website and secure your slots!
DARRELL ER (CO

' O ' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' O ' Levels!
The $\mathbf{4}$ hour session focuses on going through key concepts and identifying commonly tested questions!

Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

[^0]: *See if you are able to visualise the example from the previous page to the 2 refraction

