Topic 13:
Properties of Creces (4048)

MASTERY

- Relatively challenging chapter for some students
- 2 key concepts
- Concepts usually tested as a stand-alone topic
- Complicated chapter if questions are obscure and students are unable to think outside of the box
- High overall weightage
- Tested consistently every year
- Typically, an 10 m question, 1 question in one of the papers

Symmetry Properties of Circles

Angle Properties of Circles

Additional Useful Theorems:

The line segment drawn from the centre to the midpoint of the chord is perpendicular to the chord

$$
\text { If } A M=M B \text {, then } A B \perp O M
$$

Every point on the perpendicular bisector of a line segment is equidistant from the endpoints of the segment

Symmetry Properties of Circles

4 Theorems to remember:

1. Chord Theorem

Chords equidistant from the centre of the circle are equal

If $A B=C D$, then $O E \perp A B$ and $O F \perp C D$
2. Perpendicular Bisector Theorem

A line from the centre, perpendicular to a chord that bisects the chord is known as the perpendicular bisector

If $A B \perp O M$, then $A M=M B$

Additional Useful Theorems:

The line joining the external point to the centre of the circle bisects the angle between the tangents

Symmetry Properties of Circles

3. Tangent Theorem

The line perpendicular to the tangent at the point of contact passes through the centre of the circle

Tangents drawn from an external point to a circle are equal

Symmetry Properties of Circles

Take Note:

This is a highly tested theorem! Many students struggle to find and use this Theorem in their solutions.

4. Alternate Segment Theorem

An angle between a tangent and a chord through the point of contact is equal to the angle in the alternate segment

Take Note:

Many students get tricked by this figure

Many students think that $\alpha=2 \boldsymbol{\beta}$ when in actual fact there is no special relationship between α and β

UNLESS: If the 2 lines above are tangents that extend to a point, then

$$
\alpha+\beta=\mathbf{1 8 0}^{\circ}
$$

Angle Properties of Circles

3. Angle between the tangent and radius is 90°

4. Angles in same segment are equal

Always look for this "butterfly" shape

IG handle:
@overmugged

Join our telegram channel:
@overmugged

Need help?
ONG KAI WEN
(Private tutor with 4 years of experience)
Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

97216433
(Whatsapp)
The crash courses will begin in June 2021 and last till Oct 2021.
Pre-register now on our website and secure your slots!

