

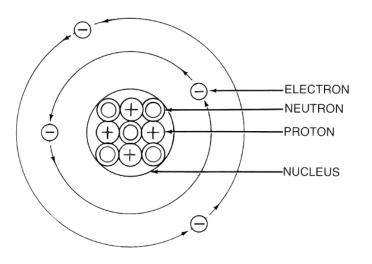
THE ABOUT

TIME

- Relatively straight forward chapter
- 2 **key** concepts
- 1 **advanced** concept

CHAPTER ANALYSIS

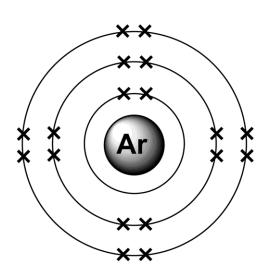
EXAM


- Usually tested in MCQs or Section A
- Tested as add-on to other chapters
 - → Chemical Bonding, Periodic Table

- Light overall weightage
- Constitute to **1.5%** of marks for past 5 year papers

BASICS

BASICS


Subatomic particle	Charge	Relative mass	Symbol	Location
Proton	+1	1	р	Nucleus
Neutron	0	1	n	Nucleus
Electron	-1	1 / 1836 (negligible mass)	е	Electron shell

BASICS

BASICS

Ar atom:

18- protons 22 - neutrons

First shell: Maximum of 2 electrons

Second shell: Maximum of 8 electrons

Third shell: Maximum of **8 electrons**

Must know: **2,8,8** electronic configuration

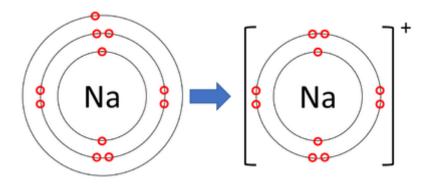
*For elements after calcium, the third shell is able to hold a maximum of 18 electrons. → *transition metals*

BASICS

BASICS

Nucleon number
$$-40$$
 (protons + neutrons) -40 Ca $-$ Symbol of element Proton number / atomic number -20

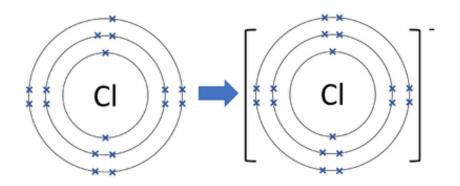
Proton number: The total **number of protons** in an atom (number of electrons as well) **Nucleon number**: The total **number of protons and neutrons** in the nucleus of an atom


Identity of an element is dependent on its proton number, not its nucleon number. → *To review later: Isotopes*

FORMATION OF POSITIVE IONS

When atoms that lose electrons, there are now more protons than electrons, hence they become positively charged. They would become a **cation**.

The sodium atom achieves a stable electronic configuration by losing one electron. It becomes a sodium cation with a charge of +1 and is written as Na⁺.

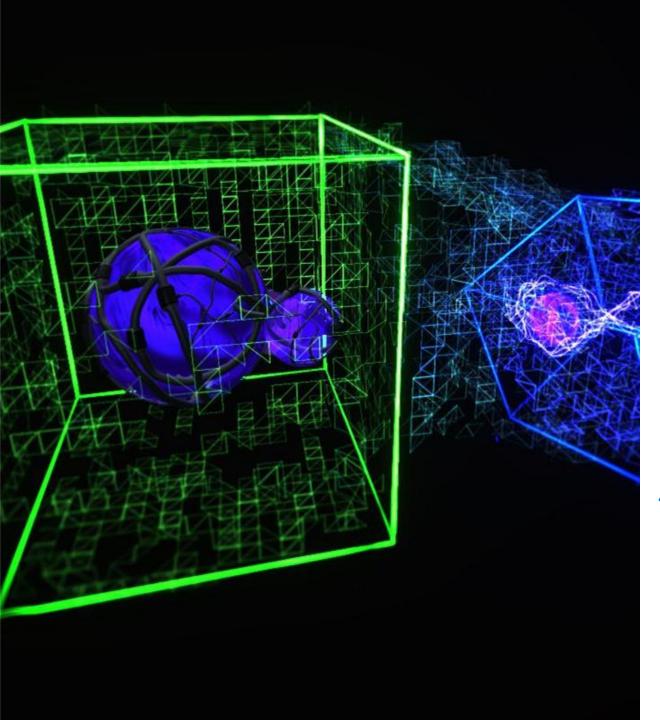


FORMATION OF NEGATIVE IONS

When atoms gain electrons, there are more electrons than protons now, they become negative ions, called an **anion**.

Negative

The chlorine atom fully completes its valence shell by gaining one electron. It is now a chlorine anion with a charge of -1 and is also written as Cl⁻.

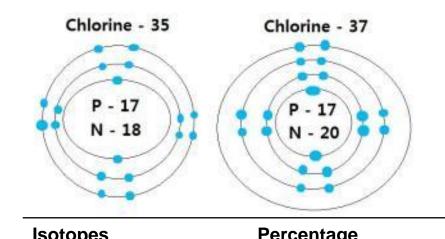


KEY CONCEPT

Let's delve deeper into the understanding of isotopes, a common killer question at 'O' levels.

ISOTOPES SAME NUMBER OF PROTONS DIFFERENT NUMBER OF NEUTRONS

ISOTOPES are atoms of the same element that have the same amount of protons and electrons but different amount of neutrons.


Isotopes of an element have **same chemical properties**, as they have **the same amount of electrons**. Hence, they will undergo the same chemical reactions to form compounds with the same chemical formula. (Recall electronic configuration)

However, isotopes will have **differences in physical properties** as having **different amount of neutrons** means that they have slightly different masses. This would also affect other physical properties like their density.

SAME CHEMICAL PROPERTIES

DIFFERENT PHYSICAL PROPERTIES

Case Study: Chlorine mass: 35.5

	Abundance
³⁵ Cl	75%
³⁷ Cl	25%

Chlorine mass on the periodic table is 35.5.

Does it mean it has 35.5 proton + neutron?

The answer? No.

Chlorine exists as chlorine-35 and chlorine-37 atoms. There are more chlorine-35 atoms however.

The final **atomic mass** seen on the periodic table is the sum of **atomic mass/percentage abundance of all the isotopes** of chlorine.

Represented by calculation:

Hence, chlorine's Ar is 35.5.

KEY CONCEPT

things to note

Understanding isotopes

Different number of neutrons

This causes **differences in physical properties** such as density.

Same number of protons/electrons

Isotopes have **similar chemical properties** as atoms would undergo the same chemical reactions to form compounds with same chemical formula.

Atomic mass is an average mass of the element's isotopes

By taking into account the **percentage composition** of the different isotopes and their respective masses, the periodic table displays that calculated **average atomic mass.**

Case study: Chlorine's Ar is 35.5

For more notes & learning materials, visit:

www.overmugged.com

Join our telegram channel:

<u>@overmugged</u>

Need help?

DARRELL (Private tutor with **7 years** of experience)

8777 0921

(Whatsapp)

@Darreller
(telegram username)

'O' levels crash course program

Professionally designed crash course to help you get a condensed revision before your 'O' Levels!

The **4 hour session** focuses on going through **key concepts** and **identifying commonly tested questions!**

Our **specialist tutors** will also impart valuable **exam pointers and tips** to help you maximise your preparation and ace your upcoming national exam!

The crash courses will begin in **June 2021 and last till Oct 2021**.

Register now on our <u>website</u> and secure your slots!

