"What one man calls God, another calls the laws of physics."

TOPIC 2 : KINEMATICS

time

- 4 key concepts
- Displacement, Velocity, Average Speed, Acceleration
- 2 advanced concepts
- Graphical Analysis, Free Fall
- Tested in MCQ and Section A or B
- Important chapter that is closely linked to chapters like Force, Work Energy Power.
- Medium overall weightage
- Constitute to around $\mathbf{3 . 5 \%}$ of marks for past 5 year papers

TWO PHYSICAL QUANTITIES DISTANCE DISPLACEMENT

DISTANCE

DISPLACEMENT

Distance is defined as the total length travelled, regardless of the direction of the motion.

Distance is a scalar quantity.

A scalar is a physical quantity that has magnitude only.

Unit: m

If a man walk along the curved path from point A to point B,

Total Distance: $40 m+70 m=110 m$

Displacement is defined as total length between the start point and the final end point of the object, taking into account the direction of the motion.

Displacement is a vector quantity.
A vector quantity is a physical quantity that have both magnitude \& direction.

Unit: m

If a man walk along the same curved path from point A to point B,

70m

TWO PHYSICAL QUANTITIES
SPEED VELOCITY

SPEED

VELOCITY

Speed is defined as the rate of change of distance with respect to time.

Speed is a scalar quantity \& has no direction.

Unit: ms^{-1}

Velocity is defined as the rate of change of displacement with respect to time. Velocity is a vector quantity, that have both magnitude \& direction.

Unit: ms^{-1}

EXAMPLE

Amy \& David walk towards each other. Taking the direction to the left as positive,
\(\xrightarrow[Amy, 25s]{\substack{100 \mathrm{~m}

Amy's speed:

100 \mathrm{~m} / 25 \mathrm{~s}=4 \mathrm{~ms}^{-1}

Amy's velocity:

100 \mathrm{~m} / 25 \mathrm{~s}=4 \mathrm{~ms}^{-1}}}\)	120 m
David, 30 s	
David's speed:	

AVERAGE SPEED ACCELERATION

Average Speed

Average speed is the total distance travelled over a period of time.
Formula:

Average Speed = Total Distance / Total Time

Instantaneous speed is the speed at a specific point in time.

Average Speed Question

What is the average speed of the car?

Total Distance $=$ Area under graph

$$
\begin{aligned}
& =(1 / 2 \times 2 \times 10)+(4 \times 10)+(1 / 2 \times 2 \times 10)+(1 / 2 \times 4 \times 10) \\
& =80 \mathrm{~m}
\end{aligned}
$$

Average speed $=80 \mathrm{~m} / 12 \mathrm{~s}$

$$
=6.67 \mathrm{~ms}^{-1}
$$

What is the average velocity of the car?

Total Displacement = area under graph

$$
=(1 / 2 \times 2 \times 10)+(4 \times 10)+(1 / 2 \times 2 \times 10)-(1 / 2 \times 4 \times 10)
$$

= 40m

$$
\begin{aligned}
\text { Average velocity } & =40 \mathrm{~m} / 12 \mathrm{~s} \\
& =3.33 \mathrm{~ms}^{-1}
\end{aligned}
$$

What is the instantaneous speed of the car at 1s?
The instantaneous speed of the car at 1 s is $5 \mathrm{~ms}^{-1}$

Acceleration

Acceleration is the rate of change of velocity with respect to time.

Formula:

Acceleration $=$ Change in velocity / time

$a=(v-u) / t$

Acceleration Question

What is the acceleration of the car in the first $\mathbf{2}$ seconds?

$$
\begin{aligned}
\text { Acceleration } & =(v-u) / \mathrm{t} \\
& =(10-0) / 2 \\
& =5.0 \mathrm{~ms}^{-2}
\end{aligned}
$$

What is the acceleration of the car between $2 s-6 s$?

The car is travelling at constant velocity, hence there is no acceleration

Describe what is happening to the car from 6s to 12s.

From $6 s$ to 8 s , the car starts to decelerate, reducing its velocity from $10 \mathrm{~ms}^{-1}$ to $0 \mathrm{~ms}^{-1}$.

At the 8s mark, the car is at rest momentarily before moving in the opposite direction. As it is reversing, it speeds up to reach $-10 \mathrm{~ms}^{-1}$.

At 10s, the car slows down while traveling in the opposite direction before coming to rest at 12 s .

GRAPHICAL ANALSIS DISPLACEMENT-TIME GRAPH VELOCITY-TIME GRAPH

Displacement-time graph

Gradient represents velocity (change in displacement per unit time).

Displacement-Time Graph Question

Displacement/

m

What is the velocity of the car in the first 2 s ?

Velocity = gradient

$$
=(50-0) / 2
$$

$$
=25 \mathrm{~ms}^{-1}
$$

What is the average speed of the car?
Average speed $=$ Total Distance $/$ Total Time
$=(50 \mathrm{~m}+50 \mathrm{~m}) / 7 \mathrm{~s}$
$=14.29 \mathrm{~ms}^{-1}$
What is the average velocity of the car?
Average speed $=$ Total Displacement $/$ Total Time
$=0 \mathrm{~m} / 7 \mathrm{~s}$
$=0 \mathrm{~ms}^{-1}$

By referring to the Y -axis, at the end of the journey at 7 s , the car's displacement is at 0 m .

Velocity-time graph

Gradient represents acceleration (change in velocity per unit time).

Area underneath velocity-time graph represents displacement.

Velocity-Time Graph Question

Velocity/ ms ${ }^{-1}$

What is the average velocity of the car?

$$
\begin{aligned}
\text { Average velocity } & =\text { Total Displacement } / \text { Total time } \\
& =\text { Area } X \text {-Area } Y / \text { time }
\end{aligned}
$$

What is the average speed of the car?

$$
\begin{aligned}
\text { Average speed } & =\text { Total Distance } / \text { Total Time } \\
& =\text { Area } X+\text { Area } Y / \text { time }
\end{aligned}
$$

NEWTON MECHANICS EQUATIONS

(Not in syllabus but very useful)

$v=u+a t$
$s=1 / 2(u+v) t$
$v^{2}=u^{2}+2 a s$
$s=u t+1 / 2 a t^{2}$

Newton Mechanics

The formulas below are very helpful when it comes to solving certain questions.
Which formula to use depends on what variable is provided by the question.

$$
\begin{gathered}
v=u+a t \\
s=1 / 2(u+v) t \\
v^{2}=u^{2}+2 a s \\
s=u t+1 / 2 a t^{2}
\end{gathered}
$$

Alternatively, if this is too complicated, questions can still be solved by drawing the graph and working out the solution accordingly.

But as you can see in the example later, the graphical method is more tedious and can get complicated.

Acceleration of free fall, \mathbf{g}
Air Resistance
Terminal Velocity

Acceleration of free fall

As all objects have mass, they will experience a gravitational force. Free fall occurs when an object falls under the sole influence of gravity (no air resistance).

$$
\mathrm{g}=10 \mathrm{~ms}^{-2}
$$

For object falling in mid-air,
For object thrown vertically upwards,

Air Resistance

Air resistance is a frictional force that opposes the motion of moving objects due to collision with air particles present in the air.

Air resistance increases with the speed/surface area of the object.

Terminal Velocity

Air resistance increases when velocity increases. Therefore when an object falls through a long distance in air, eventually the air resistance will be equal to the weight of the object.

The resultant force on the body is zero and there will be no acceleration . ($\mathrm{F}=\mathrm{ma}$)

The object will then continue its fall at constant velocity. This constant velocity is also known as terminal velocity.

IG handle:
@overmugged

Darrell Er

(Private tutor with 8
years of experience)
87770921
(Whatsapp)
@DarrellEr
(telegram username)

Pre-register now on our website and secure your slots!
DARRELL ER (CO

' O ' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' O ' Levels!
The $\mathbf{4}$ hour session focuses on going through key concepts and identifying commonly tested questions!

Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

