"What one man calls God, another calls the laws of physics."

TOPIC 6 PRESSURE

CHAPTER ANALYSIS

- Be clear about the different applications of pressure
- Mercury barometer, hydraulic system, U-tube manometer
- Tested in MCQ and Section A or B
- Light-medium overall weightage
- Constitute to around $\mathbf{4 \%}$ of marks for past 5 year papers

PRESSURE

PRESSURE IN FLUIDS

 ATMOSPHERIC PRESSURE

PRESSURE

Force, F

PRESSURE
Pressure is defined as the force acting per unit area.
Unit: Pascal (Pa) or Nm^{-2}

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$

PRESSURE

PRESSURE

When calculating pressure, take note of the units whether it is in cm or m.

Also, mass is in kg while weight is a force, with units Newton (N).

For a block with unique dimensions, the smallest base area gives the greatest pressure.

Meanwhile, the largest base area gives the least pressure.

PRESSURE IN FLUIDS

E There is no difference \qquad

PRESSURE IN FLUIDS

Pressure exerted by a fluid is proportional to the depth at which the body is submerged.

Formula:

$$
P=\rho g h
$$

The formula $\boldsymbol{P}=\boldsymbol{\rho} \boldsymbol{g} \boldsymbol{h}$ is a derivative of $P=F / A$.

$$
\begin{gathered}
P=F / A \\
P=\text { Weight } / A \\
P=m g / A
\end{gathered}
$$

Since mass $=$ density x volume,

$$
P=(\text { density } x \text { volume } \times g) / A
$$

Since Volume / A = height,

$$
P=\rho g h
$$

Hence for any liquid, the height of the liquid in any container or orientation will give us the pressure.

This is regardless of the shape or dimension/base area of the container.

PRESSURE IN FLUIDS

ATMOSPHERIC PRESSURE

Atmospheric pressure is defined as the weight of air in the atmosphere per unit area of any surface.

Air that is around us exerts pressure on all bodies on Earth.

Hence, a more accurate formula for fluid pressure that is exposed to air is,

$$
\mathbf{P}_{\text {Total }}=\mathbf{P}_{\text {Fluid }}+\mathbf{P}_{\text {atm }}
$$

MERCURY BAROMETER HYDRAULIC SYSTEM U-TUBE MANOMETER

MERCURY BAROMETER

MERCURY BAROMETER

A simple mercury barometer measures atmospheric pressure.

The mercury experiences atmospheric pressure outside the column (at Y).

The height, X, represents the atmospheric pressure. $(76 \mathrm{~cm} \mathrm{Hg})$
The volume of mercury in the column will increase or decrease with changes in atmospheric pressure such that Pressure at $\mathrm{y}=$ Height of X

Atmosphere (atm) and centimetres of mercury (cm Hg) are common units for atm pressure

At sea level, it is 1 atm or 76 cm Hg .

Scenario	Explanation
Water is used instead	As water's density is much lower while atmospheric pressure remains constant, the height of the water column will be much higher. ($\mathrm{P}=\rho \mathrm{\rho gh}$)
The glass tube is tilted	Perpendicular height of mercury column to the reservori is unchanged as pressure is dependent on the vertical height and not the length of the column.
The barometer is brought to a higher altitude	As the air is thinner at higher altitude, atmospheric pressure is lowered. Hence, height of mercury column decreases.
There is a crack in the glass tube along the mercury column above the reservoir	Height of mercury decreases to the same level as the reservoir as air will move from outside the tube to inside until the pressure difference is zero.

HYDRAULIC SYSTEM

Application: Car Brakes

When a driver steps on the brake pedal, the force on the small piston exerts pressure on the brake fluid.

The brake fluid transmits the pressure to the larger pistons. The pressure exerts a greater force on the larger pistons, which clamps the disc and shows down the car.

U-TUBE MANOMETER

If both ends are exposed to air,

$$
\begin{aligned}
P_{\text {fluid }} & =P_{\text {Fluid }} \\
\rho g h & =\rho g h \\
\rho h & =\rho h
\end{aligned}
$$

(compare density \& height only) (atmospheric pressure cancels out)

IG handle:
@overmugged

Darrell Er

(Private tutor with 8
years of experience)
87770921
(Whatsapp)
@DarrellEr
(telegram username)

Pre-register now on our website and secure your slots!
DARRELL ER (CO

' O ' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' O ' Levels!
The $\mathbf{4}$ hour session focuses on going through key concepts and identifying commonly tested questions!

Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

