"What one man calls God, another calls the laws of physics."

TOPIC 8:
 KINETIC MODEL OF MATTER

CHAPTER ANALYSIS

WEIGHTAGE

- Straight forward chapter
- Understand relationship of gas
- Commonly tested in MCQ
- Tested together with other Thermal Physics chapters
- Light-medium overall weightage
- Constitute to around $\mathbf{3 \%}$ of marks for past 5 year papers

KINETIC MODEL OF MATTER

 SOLID, LIQUID, GASTEMPERATURE \& MOTION OF MOLECULES

KINETIC MODEL OF MATTER

KINETIC MODEL OF MATTER

Physical properties	Solid	Liquid	Gas
Diagram			Far apart; random arrangement
Arrangeme nt of particles	Packed close together; orderly arrangement	Packed loosely together; disorderly arrangement	Moves randomly at high speed
Movement of particles	Vibrate about fixed position	Slide over one another	No fixed shape \& no fixed volume (can be compressed)
 Volume	Fixed shape \& fixed Volume	No fixed shape but has fixed volume	Large space (ittle space (more than solid)
Space between molecules	Very little	Strong attraction (weaker than solid)	Weak attraction
Forces between particles	Very strong attraction	Very low - particles are far apart	
Density	Very high - particles are close together close together	particles are	

BROWNIAN MOTION

BROWNIAN MOTION

Brownian motion is defined as the constant random movement of smoke particles suspended in a fluid (liquid or gas) due to the uneven bombardment of the suspended particles by the air molecules.

Smoke particles movement

Smoke particles are observed to move continuously and randomly as they are being hit by unseen, fast-moving air molecules

The reflection of light off the surfaces of the smoke particles appears as bright specks of lights to observers.

RELATIONSHIP OFGAS

Baseline

[^0]

Baseline

Volume decreased Wall area decreased = Increased pressure

Boyle's law
(b)

Baseline

PRESSURE, VOLUME \& TEMPERATURE OF GAS

For a gas inside a container, the gaseous molecules will collide against the container wall and exert a force per unit area, giving rise to gaseous pressure.

A higher frequency of collision will also result in greater force exerted and hence increasing the pressure as well.

Formula:
PV = nRT

Can be simplified to,

$$
P V \propto T
$$

RELATIONSHIP OF GAS

Pressure \propto Temperature

For a fixed mass of gas at constant volume, when temperature is higher, thermal energy is transferred to the molecules and gaseous particles move faster.

This increases both the frequency of collision against the wall and the force exerted by each gaseous particle.

Pressure will hence increase.

RELATIONSHIP OF GAS

Volume decreased Wall area decreased = Increased pressure

Boyle's law
(b)

Pressure $\propto 1 /$ volume

For a fixed mass of gas at constant temperature, average speed of the molecules remains the same.

Decreasing the volume of the container means that the number of gas molecules per unit volume in the container is increased.

As number of molecules hitting the wall per unit time also increases, pressure increases.

Boyle's Law

$$
P_{1} \times V_{1}=P_{2} \times V_{2}
$$

RELATIONSHIP OFGAS

Container pressure constant More gas molecules added
 = Increased volume

Avogadro's law
(c)

Volume \propto Temperature

If pressure is constant, an increase in temperature would increase the volume of the container.

When temperature is higher, thermal energy is transferred to the molecules and gaseous particles move faster.

This increases both the frequency of collision against the wall and the force exerted by each gaseous particle.

Pressure will hence increase.
In order to reduce the frequency of collision in order to maintain a constant pressure, volume will increase to reduce the number of particles per unit volume and hence reducing the number of collisions, which helps to maintain pressure at constant value.

RELATIONSHIP OF TEMPERATURE \& MOTION OF MOLECULES

TEMPERATURE \propto MOTION OF MOLECULE

When temperature is higher, thermal energy is transferred to the molecules and gaseous particles gain kinetic energy.

This cause the molecules to move faster.
This increases both the frequency of collision against the wall and the force exerted by each gaseous particle.

Since pressure is force per unit area, pressure will hence increase.

IG handle:
@overmugged

Darrell Er

(Private tutor with 8
years of experience)
87770921
(Whatsapp)
@DarrellEr
(telegram username)

Pre-register now on our website and secure your slots!
DARRELL ER (CO

' O ' levels crash course program

Professionally designed crash course to help you get a condensed revision before your ' O ' Levels!
The $\mathbf{4}$ hour session focuses on going through key concepts and identifying commonly tested questions!

Our specialist tutors will also impart valuable exam pointers and tips to help you maximise your preparation and ace your upcoming national exam!

[^0]: Temperature increased = Increased pressure

 Amonton's law
 (a)

