March Practice Questions 2022 Full Solutions (A-Math)

Copyright

All materials prepared in this Practice Questions set are prepared by the original tutor (Kaiwen). All rights reserved. No part of any materials provided may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without prior written permission of the tutor

Question Source

All questions are sourced and selected based on the known abilities of students sitting for the 'O' Level A-Math Examination. All questions compiled here are from 2017-2018 School Mid-Year / Prelim Papers. Questions are categorised into the various topics and range in varying difficulties. If questions are sourced from respective sources, credit will be given when appropriate.

How to read:

$$
\text { [S4 ABCSS P1/2011 PRELIM Qn } 1 \text {] }
$$

Secondary 4, ABC Secondary School, Paper 1, 2011, Prelim, Question 1

Syllabus (4049)

Algebra	Geometry and Trigonometry	Calculus
Quadratic Equations \& Inequalities	Trigonometry	Differentiation
Surds	Coordinate Geometry	Integration
Polynomials	Further Coordinate Geometry	Kinematics
Simultaneous Equations	Linear Law	
Partial Fractions	Proofs of Plane Geometry	
Binomial Theorem		
Exponential \& Logarithms		

Contents
1 Quadratic Equations \& Inequalities 3
1.1 Full Solutions 3
2 Surds 6
2.1 Full Solutions 6
3 Polynomials 10
3.1 Full Solutions 10
4 Partial Fractions 15
4.1 Full Solutions 15
5 Binomial Theorem 18
5.1 Full Solutions 18
6 Exponential \& Logarithms 24
6.1 Full Solutions 24
7 Trigonometry 28
7.1 Full Solutions 28
8 Coordinate Geometry 35
8.1 Full Solutions 35
9 Further Coordinate Geometry 40
9.1 Full Solutions 40
10 Linear Law 43
10.1 Full Solutions 43
11 Proofs of Plane Geometry 49
11.1 Full Solutions 49
12 Differentiation 52
12.1 Full Solutions 52
13 Integration 57
13.1 Full Solutions 57
14 Differentiation \& Integration 62
14.1 Full Solutions 62
15 Kinematics 66
15.1 Full Solutions 66

1 Quadratic Equations \& Inequalities

1.1 Full Solutions

1. (a) When $k=-20$ and given that $y<0$,

$$
\begin{gathered}
2 x^{2}-6 x-20<0 \\
x^{2}-3 x-10<0 \\
(x-5)(x+2)<0 \\
-\mathbf{2}<\boldsymbol{x}<\mathbf{5}
\end{gathered}
$$

(b) When $k=10$,

$$
\begin{array}{r}
y=2 x^{2}-6 x+10 \\
\quad y+2 x=8 \ldots . . \tag{2}
\end{array}
$$

Let Equation (1) = Equation (2),

$$
\begin{array}{r}
2 x^{2}-6 x+10+2 x=8 \\
2 x^{2}-4 x+2=0 \\
x^{2}-2 x+1=0
\end{array}
$$

To show that the line is tangential to the curve, WTS: $b^{2}-4 a c=0$

$$
\begin{aligned}
\therefore b^{2}-4 a c & =(-2)^{2}-4(1)(1) \\
& =0(\text { shown })
\end{aligned}
$$

2. (a) Since the solutions are $\frac{1}{4}<x<1$ respectively

$$
\begin{aligned}
(4 x-1)(x-1) & =0 \\
4 x^{2}-5 x+1 & =0 \\
-4 x^{2}+5 x-1 & =0 \\
\therefore \boldsymbol{a}=\mathbf{4} \quad \boldsymbol{b} & =\mathbf{5}
\end{aligned}
$$

(b) Since the curve lies completely below the line $y=1-4 x$,

$$
\begin{gathered}
-4 x^{2}+5 x-1<1-4 x \\
4 x^{2}-9 x+2>0 \\
(4 x-1)(x-2)>0 \\
\therefore \boldsymbol{x}<\frac{\mathbf{1}}{\mathbf{4}} \quad \text { or } \quad \boldsymbol{x}>\mathbf{2}
\end{gathered}
$$

3. (a)

$$
\begin{aligned}
p x^{2}+8 x+p & >6 \\
p x^{2}+8 x+(p-6) & >0
\end{aligned}
$$

Since the curve is strictly above the x-axis, $b^{2}-4 a c<0$

$$
\begin{aligned}
&(8)^{2}-4(p)(p-6)<0 \\
&-4 p^{2}+24 p+64<0 \\
& p^{2}-6 p-16>0 \\
&(p+2)(p-8)>0 \\
& \therefore p<-2 \quad p>8
\end{aligned}
$$

Since the curve is strictly above the x-axis, $p>0$

$$
\therefore p>8
$$

(b)

$$
\begin{array}{r}
y+q x=q \ldots \ldots(1 \\
y=(q+1) x^{2}+q x-1
\end{array}
$$

Let Equation (1) = Equation (2),

$$
\begin{array}{r}
(q+1) x^{2}+q x-1+q x=q \\
(q+1) x^{2}+2 q x+(-q-1)=0
\end{array}
$$

To show that the line will intersect the curve at 2 distinct points, WTS: $b^{2}-4 a c>0$

$$
\begin{aligned}
b^{2}-4 a c & =(2 q)^{2}-4(q+1)(-q-1) \\
& =4 q^{2}+4(q+1)^{2}
\end{aligned}
$$

Since $4 q^{2} \geq 0$ and $4(q+1)^{2}>0$

$$
\therefore b^{2}-4 a c>0 \text { (shown) }
$$

4. (a) Since $p x^{2}+q x+2 q$ is always negative, $b^{2}-4 a c<0$ and $p<0$

$$
\begin{aligned}
(q)^{2}-4(p)(2 q) & <0 \\
q^{2}-8 p q & <0 \\
q(q-8 p) & <0 \\
\therefore \boldsymbol{p}<\mathbf{0} \quad \& \quad 8 \boldsymbol{p} & <\boldsymbol{q}<\mathbf{0}
\end{aligned}
$$

(b) Any value of p and q as long as

- p and q are negative
- $8 p<q$

5. (a)

$$
\begin{array}{r}
y=2 x^{2}+5 x+8 \\
y=m x+c \ldots \tag{2}
\end{array}
$$

Take Equation (1) = Equation (2),

$$
\begin{aligned}
2 x^{2}+5 x+8 & =m x+c \\
2 x^{2}+(5-m) x+(8-c) & =0
\end{aligned}
$$

Given that the line does not intersect the curve, $b^{2}-4 a c<0$

$$
\begin{aligned}
(5-m)^{2}-4(2)(8-c) & <0 \\
25-10 m+m^{2}-64+8 c & <0 \\
m^{2}-10 m-39+8 c & <0 \text { (shown) }
\end{aligned}
$$

(b) Given that the solution set is $-5<m<15$

$$
(m+5)(m-15)=m^{2}-10 m-75
$$

Comparing coefficients,

$$
\begin{aligned}
-75 & =-39+8 c \\
c & =-\mathbf{4} \frac{\mathbf{1}}{\mathbf{2}}
\end{aligned}
$$

2 Surds

2.1 Full Solutions

1. (a)

$$
\begin{aligned}
\text { Cross-sectional area } & =\pi(4 \sqrt{3}-1)^{2}-\pi(3 \sqrt{3}-1)^{2} \\
& =\pi(48-8 \sqrt{3}+1)-\pi(27-6 \sqrt{3}+1) \\
& =(\mathbf{2 1}-\mathbf{2} \sqrt{\mathbf{3}}) \boldsymbol{\pi} \mathbf{c m}^{\mathbf{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Volume } & =(521 \sqrt{3}-108) \pi \\
\pi(21-2 \sqrt{3})(c+d \sqrt{3}) & =(521 \sqrt{3}-108) \pi \\
(c+d \sqrt{3}) & =\frac{(521 \sqrt{3}-108) \pi}{(21-2 \sqrt{3}) \pi} \\
& =\frac{521-108 \sqrt{3}}{21-2 \sqrt{3}} \times \frac{21+2 \sqrt{3}}{21+2 \sqrt{3}} \\
& =\frac{10941 \sqrt{3}+3126-2268+216 \sqrt{3}}{(21-2 \sqrt{3})(21+2 \sqrt{3})} \\
& =\frac{10725 \sqrt{3}+858}{429} \\
& =(\mathbf{2 5} \sqrt{\mathbf{3}}+\mathbf{2}) \mathbf{c m}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\text { Area } & =\pi\left(\frac{3}{\sqrt{6}}+\sqrt{3}\right)^{2} \\
& =\pi\left(\frac{3+3 \sqrt{2}}{\sqrt{6}}\right)^{2} \\
& =\pi\left(\frac{9+18 \sqrt{2}+18}{6}\right) \\
& =\frac{(\mathbf{9}+\mathbf{6} \sqrt{2}) \boldsymbol{\pi}}{\mathbf{2}} \mathbf{c m}^{2}
\end{aligned}
$$

(b) Let the height be h

$$
\begin{aligned}
\text { Surface Area } & =\pi(20 \sqrt{2}+10) \\
2 \pi\left(\frac{3}{\sqrt{6}}+\sqrt{3}\right) h & =\pi(20 \sqrt{2}+10) \\
(\sqrt{6}+2 \sqrt{3}) h & =20 \sqrt{2}+10 \\
h & =\frac{20 \sqrt{2}+10}{\sqrt{6}+2 \sqrt{3}} \times \frac{\sqrt{6}-2 \sqrt{3}}{\sqrt{6}-2 \sqrt{3}} \\
& =\frac{20 \sqrt{12}-40 \sqrt{6}+10 \sqrt{6}-20 \sqrt{3}}{6-12} \\
& =\frac{20 \sqrt{3}-30 \sqrt{6}}{-6} \\
& =\left(\mathbf{5} \sqrt{\mathbf{6}}-\frac{\mathbf{1 0}}{\mathbf{3}} \sqrt{\mathbf{3}}\right) \mathbf{c m}
\end{aligned}
$$

3.

$$
\left.\begin{array}{rl}
\sqrt{a+b \sqrt{3}} & =\frac{2 \sqrt{3}}{3-\sqrt{3}} \times \frac{3+\sqrt{3}}{3+\sqrt{3}} \\
& =\frac{6 \sqrt{3}+2(3)}{6} \\
& =\sqrt{3}+1
\end{array}\right] \begin{aligned}
\therefore a+b \sqrt{3} & =(\sqrt{3}+1)^{2} \\
& =3+2 \sqrt{3}+1 \\
& =4+2 \sqrt{3} \\
\therefore \boldsymbol{a}= & \mathbf{4} \quad \boldsymbol{b}=\mathbf{2}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
C M & =\sqrt{12^{2}-6^{2}} \\
& =\sqrt{108} \\
& =6 \sqrt{3} \mathrm{~cm} \\
\therefore \text { Time taken }= & 6 \sqrt{3} \div \frac{6-3 \sqrt{3}}{4} \\
= & \frac{24 \sqrt{3}}{6-3 \sqrt{3}} \times \frac{6+3 \sqrt{3}}{6+3 \sqrt{3}} \\
= & \frac{144 \sqrt{3}+216}{(6-3 \sqrt{3})(6+3 \sqrt{3})} \\
= & \frac{144 \sqrt{3}+216}{9} \\
= & (\mathbf{1 6} \sqrt{\mathbf{3}}+\mathbf{2 4}) \text { seconds }
\end{aligned}
$$

(b)

$$
\begin{aligned}
125^{k} & =\sqrt[3]{25 \sqrt{5}} \\
5^{3 k} & =\sqrt[3]{5^{2 \frac{1}{2}}} \\
& =\left(5^{2 \frac{1}{2}}\right)^{\frac{1}{3}} \\
& =5^{\frac{5}{6}}
\end{aligned}
$$

Comparing coefficients

$$
\begin{aligned}
\therefore 3 k & =\frac{5}{6} \\
k & =\frac{\mathbf{5}}{\mathbf{1 8}}
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
\text { LHS }= & \frac{15^{2 k} \times 9^{4 k} \times 5^{6 k}}{3^{2 k}} \\
= & \frac{3^{2 k} \times 5^{2 k} \times 3^{8 k} \times 5^{6 k}}{3^{2 k}} \\
= & 3^{8 k} \times 5^{8 k} \\
= & 15^{8 k} \\
& \therefore \boldsymbol{m}=\mathbf{1 5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { LHS } & =\left(\frac{4}{\sqrt{3}}+\frac{2 \sqrt{15}}{3}-\frac{8}{\sqrt{12}}\right) \times \sqrt{6} \\
& =\left(\frac{4 \sqrt{3}}{3}+\frac{2 \sqrt{3} \sqrt{5}}{3}-\frac{8}{2 \sqrt{3}}\right) \times \sqrt{3} \sqrt{2} \\
& =\left(\frac{4 \sqrt{3}+2 \sqrt{3} \sqrt{5}}{3}-\frac{4}{\sqrt{3}}\right) \times \sqrt{3} \sqrt{2} \\
& =\left(\frac{4 \sqrt{3}+2 \sqrt{3} \sqrt{5}-4 \sqrt{3}}{3}\right) \times \sqrt{3} \sqrt{2} \\
& =\frac{2 \sqrt{3} \sqrt{5}}{3} \times \sqrt{3} \sqrt{2} \\
& =2 \sqrt{10}
\end{aligned}
$$

$$
\therefore k=10
$$

(c) (i) Let the intersection between the two diagonals be M. By Pythagoras' Theorem,

$$
\begin{gathered}
P Q^{2}=P M^{2}+Q M^{2} \\
P Q^{2}=\left(\frac{1}{2}(4+2 \sqrt{3})\right)^{2}+\left(\frac{1}{2}\left(6+\frac{4}{\sqrt{3}}\right)\right)^{2} \\
=(2+\sqrt{3})^{2}+\left(3+\frac{2}{\sqrt{3}}\right)^{2} \\
=4+4 \sqrt{3}+3+9+\frac{12}{\sqrt{3}}+\frac{4}{3} \\
=\frac{\mathbf{5 2}}{\mathbf{3}}+\mathbf{8} \sqrt{\mathbf{3}}
\end{gathered}
$$

(ii)

$$
\text { Area of } \begin{aligned}
\triangle P Q R & =\frac{1}{4} \times P R \times Q S \\
& =\frac{1}{4}(4+2 \sqrt{3})\left(6+\frac{4}{\sqrt{3}}\right) \\
& =\frac{1}{4}\left(24+\frac{16}{\sqrt{3}}+12 \sqrt{3}+8\right) \\
& =\frac{1}{4}\left(32+\frac{52}{3} \sqrt{3}\right) \\
& =\left(\mathbf{8}+\frac{\mathbf{1 3} \sqrt{\mathbf{3}}}{\mathbf{3}}\right) \mathbf{c m}^{2}
\end{aligned}
$$

3 Polynomials

3.1 Full Solutions

1. (a)

$$
x^{2}+2 x-3=(x+3)(x-1)
$$

Let $f(1)=0$

$$
\begin{align*}
(1)^{4}+6(1)^{3}+2 a(1)^{2}+b(1)-3(a) & =0 \\
b-a & =-7 \tag{1}
\end{align*}
$$

Let $f(-3)=0$

$$
\begin{align*}
(-3)^{4}+6(-3)^{3}+2 a(-3)^{2}+b(-3)-3(a) & =0 \\
15 a-3 b & =81 \\
5 a-b & =27 \tag{2}
\end{align*}
$$

Take Equation (1) + Equation (2),

$$
\begin{aligned}
(b-a)+(5 a-b) & =-7+27 \\
4 a & =20 \\
a & =5
\end{aligned}
$$

Substitute $a=5$ into Equation (1),

$$
\begin{gathered}
b-5=-7 \\
b=-2 \\
\therefore \boldsymbol{a}=\mathbf{5} \quad \boldsymbol{b}=-\mathbf{2}
\end{gathered}
$$

(b)

$$
\begin{aligned}
f(x) & =x^{4}+6 x^{3}+10 x^{2}-2 x-15 \\
& =\left(x^{2}+2 x-3\right)\left(x^{2}+c x+5\right)
\end{aligned}
$$

Comparing x^{2} coefficients,

$$
\begin{aligned}
-3+2 c+5 & =10 \\
2 c & =8 \\
c & =4
\end{aligned}
$$

$$
\begin{aligned}
\therefore f(x) & =\left(x^{2}+2 x-3\right)\left(x^{2}+4 x+5\right) \\
& =(x+3)(x-1)\left(x^{2}+4 x+5\right)
\end{aligned}
$$

For $x^{2}+4 x+5$,

$$
\begin{aligned}
b^{2}-4 a c & =(4)^{2}-4(1)(5) \\
& =-4<0
\end{aligned}
$$

Since the discriminant $<0, x^{2}+4 x+5$ has no real roots
\therefore Number of real roots is $\mathbf{2}$
2. Let $x=-2$,

$$
\begin{gathered}
(-2)^{3}-4(-2)^{2}-8(-2)+8=0 \\
\therefore(x+2) \text { is a factor of } f(x) \\
f(x)=(x+2)\left(x^{2}+c x+4\right)
\end{gathered}
$$

Comparing x^{2} coefficients,

$$
\begin{gathered}
2+c=-4 \\
c=-6 \\
\therefore f(x)=(x+2)\left(x^{2}-6 x+4\right)=0
\end{gathered}
$$

For $x^{2}-6 x+4$,

$$
\begin{aligned}
x & =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(4)}}{2(1)} \\
& =\frac{6 \pm \sqrt{20}}{2} \\
& =\frac{6 \pm 2 \sqrt{5}}{2} \\
& =3 \pm \sqrt{5} \\
& \therefore x=\mathbf{x} \quad \boldsymbol{x}=\mathbf{3} \pm \sqrt{\mathbf{5}}
\end{aligned}
$$

3. (a) Let $f(1)=0$,

$$
\begin{align*}
& 3(1)^{3}+a(1)^{2}+b(1)+2=0 \\
& a+b=-5 \\
& a=-5-b \ldots \ldots(1) \tag{1}\\
& f(2)=\left(2 \frac{1}{2}\right) f(-1) \\
& 3(2)^{3}+a(2)^{2}+b(2)+2=\left(2 \frac{1}{2}\right)\left[3(-1)^{3}+a(-1)^{2}+b(-1)+2\right] \\
& 26+4 a+2 b=\left(2 \frac{1}{2}\right)[-1+a-b] \\
& 1 \frac{1}{2} a+4 \frac{1}{2} b=-28 \frac{1}{2} \ldots \ldots(2) \tag{2}
\end{align*}
$$

Substitute Equation (1) into Equation (2),

$$
\begin{aligned}
1 \frac{1}{2}(-5-b)+4 \frac{1}{2} b & =-28 \frac{1}{2} \\
3 b & =-21 \\
b & =-7
\end{aligned}
$$

Substitute $b=-7$ into Equation (1),

$$
\begin{aligned}
& \quad a=-5-(-7) \\
& =2 \\
& \therefore a=2 \quad b=-7 \text { (shown) }
\end{aligned}
$$

(b) Let c be a constant

$$
\begin{aligned}
f(x) & =3 x^{3}+2 x^{2}-7 x+2 \\
& =(x-1)\left(3 x^{2}+c x-2\right)
\end{aligned}
$$

Compare coefficients,

$$
\begin{aligned}
& 2=3(-1)+c \\
& c=5
\end{aligned}
$$

Since $f(x)=0$

$$
\begin{aligned}
&(x-1)\left(3 x^{2}+5 x-2\right)=0 \\
&(x-1)(3 x-1)(x+2)=0 \\
& \therefore \boldsymbol{x}=\mathbf{1} \quad \text { or } \quad \boldsymbol{x}=\frac{\mathbf{1}}{\mathbf{3}} \quad \text { or } \quad \boldsymbol{x}=-\mathbf{2}
\end{aligned}
$$

(c)

$$
\begin{array}{r}
3 \sin ^{2} y-2 \sec y-2 \cos y+4=0 \\
3\left(1-\cos ^{2} y\right)-\frac{2}{\cos y}-2 \cos y+4=0 \\
3 \cos y-3 \cos ^{3} y-2-2 \cos ^{2} y+4 \cos y=0 \\
3 \cos ^{3} y+2 \cos ^{2} y-7 \cos y+2=0
\end{array}
$$

Comparing the 2 equations,

\[

\]

For $\cos y=1$

$$
\begin{gathered}
\alpha=0 \quad \text { (Quadrant } 1 \text { or } 4) \\
y=\mathbf{0}^{\circ} \quad \text { or } \quad y=\mathbf{3 6 0}^{\circ}
\end{gathered}
$$

For $\cos y=\frac{1}{3}$

$$
\begin{gathered}
\alpha=\cos ^{-1}\left(\frac{1}{3}\right) \quad(\text { Quadrant } 1 \text { or } 4) \\
y=\cos ^{-1}\left(\frac{1}{3}\right) \\
=\mathbf{7 0 . 5}^{\circ} \quad \text { (1.d.p.) } \\
y=360^{\circ}-\cos ^{-1}\left(\frac{1}{3}\right) \\
=\mathbf{2 8 9 . 5} \mathbf{5}^{\circ} \quad(\mathbf{1 . d . p .}) \\
\boldsymbol{y}=\mathbf{0}^{\circ} \quad \boldsymbol{y}=\mathbf{7 0 . 5} \quad \boldsymbol{y}=\mathbf{2 8 9 . 5} \quad{ }^{\circ} \quad \boldsymbol{y}=\mathbf{3 6 0}
\end{gathered}
$$

4.

$$
\begin{aligned}
f(x) & =2\left(7^{n+2}\right)+7^{n}+3\left(7^{n+1}\right) \\
& =2(49)\left(7^{n}\right)+7^{n}+21\left(7^{n}\right) \\
& =120\left(7^{n}\right) \\
& =10(12)\left(7^{n}\right)
\end{aligned}
$$

Since 10 is a factor of $f(x)$, Billy's comment is correct
5. (a) By long division

$$
Q(x)=\mathbf{2} \boldsymbol{x}^{\mathbf{2}}-\boldsymbol{x}-\mathbf{3}
$$

(b)

$$
\begin{aligned}
f(x) & =2 x^{4}+5 x^{3}-8 x^{2}-8 x+3 \\
& =\left(x^{2}+3 x-1\right)\left(2 x^{2}-x-3\right) \\
& =\left(\boldsymbol{x}^{\mathbf{2}}+\mathbf{3} \boldsymbol{x}-\mathbf{1}\right)(\mathbf{2} \boldsymbol{x}-\mathbf{3})(\boldsymbol{x}+\mathbf{1})
\end{aligned}
$$

(c) By observation

$$
\begin{gathered}
32 p^{4}+40 p^{3}-32 p^{2}-16 p+3=0 \\
2(2 p)^{4}+5(2 p)^{3}-8(2 p)^{2}-8(2 p)+3=0 \\
x=2 p \\
(2 p)^{2}+3(2 p)-1=0 \quad \text { or } \quad(2(2 p)-3)((2 p)+1)=0 \\
4 p^{2}+6 p-1=0 \quad \text { or } \quad(4 p-3)(2 p+1)=0
\end{gathered}
$$

For the quadratic factor

$$
\begin{aligned}
p & =\frac{-6 \pm \sqrt{(6)^{2}-4(4)(-1)}}{2(4)} \\
& =\frac{-\mathbf{3} \pm \sqrt{\mathbf{1 3}}}{\mathbf{4}}
\end{aligned}
$$

For the linear factors

$$
p=\frac{\mathbf{3}}{\mathbf{4}} \quad \text { or } \quad p=-\frac{\mathbf{1}}{\mathbf{2}}
$$

4 Partial Fractions

4.1 Full Solutions

1. (a)

$$
\frac{P(x)}{Q(x)}=\frac{3 x^{3}-9 x^{2}-18 x+24}{x^{2}-9}
$$

By long division,

$$
\frac{P(x)}{Q(x)}=3 x-9+\frac{9 x-57}{x^{2}-9}
$$

Hence,

$$
\begin{aligned}
\frac{9 x-57}{x^{2}-9} & =\frac{A}{x-3}+\frac{B}{x+3} \\
9 x-57 & =A(x+3)+B(x-3)
\end{aligned}
$$

Let $x=3$,

$$
\begin{aligned}
9(3)-57 & =6 A \\
A & =5
\end{aligned}
$$

Let $x=-3$,

$$
\begin{gathered}
9(-3)-57=-6 B \\
B=14 \\
\frac{P(x)}{Q(x)}=\mathbf{3 x}-\mathbf{9}+\frac{\mathbf{5}}{\boldsymbol{x}-\mathbf{3}}+\frac{\mathbf{1 4}}{\boldsymbol{x}+\mathbf{3}}
\end{gathered}
$$

(b) (i)

$$
\begin{aligned}
3 x^{4}-9 x^{2}-18 x+24 & =0 \\
x^{3}-3 x^{2}-6 x+8 & =0 \\
(x+2)(x-4)(x-1) & =0
\end{aligned}
$$

$$
\therefore x=-2 \quad \text { or } \quad \boldsymbol{x}=4 \quad \text { or } \quad \boldsymbol{x}=\mathbf{1}
$$

(ii) By comparing the equations

$$
x=\log _{2} \sqrt{y}
$$

$$
\begin{array}{rcc}
\log _{2} \sqrt{y}=-2 & \log _{2} \sqrt{y}=4 & \log _{2} \sqrt{y}=1 \\
\sqrt{y}=2^{-2} & \sqrt{y}=2^{4} & \sqrt{y}=2 \\
y=\mathbf{2}^{-\mathbf{4}} & y=\mathbf{2}^{\mathbf{8}} & y=\mathbf{2}^{\mathbf{2}}
\end{array}
$$

2.

$$
\begin{aligned}
& \frac{4}{\left(x^{2}+4\right)(x-2)}=\frac{A}{x-2}+\frac{B x+C}{x^{2}+4} \\
& 4=A\left(x^{2}+4\right)+(B x+C)(x-2)
\end{aligned}
$$

Let $x=2$,

$$
\begin{aligned}
& 4=8 A \\
& A=\frac{1}{2}
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
4 & =4\left(\frac{1}{2}\right)-2 C \\
C & =-1
\end{aligned}
$$

Let $x=1$,

$$
\begin{gathered}
4=5\left(\frac{1}{2}\right)-(B-1) \\
B=-\frac{1}{2} \\
\therefore \frac{4}{\left(x^{2}+4\right)(x-2)}=\frac{1}{2(x-2)}-\frac{\boldsymbol{x}+\mathbf{2}}{\mathbf{2 (x ^ { 2 } + 4)}}
\end{gathered}
$$

3. By Long Division,

$$
\frac{2 x^{3}-3 x-1}{(x+3)(x-1)}=2 x-4+\frac{11 x-13}{(x+3)(x-1)}
$$

Hence,

$$
\begin{aligned}
\frac{11 x-13}{(x+3)(x-1)} & =\frac{A}{x+3}+\frac{B}{x-1} \\
11 x-13 & =A(x-1)+B(x+3)
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
11(1)-13 & =4 B \\
B & =-\frac{1}{2}
\end{aligned}
$$

Let $x=-3$,

$$
\begin{aligned}
& 11(-3)-13=-4 A \\
& A=\frac{23}{2} \\
& \therefore \frac{2 x^{3}-3 x-1}{(x+3)(x-1)}=\mathbf{2 x}-4+\frac{\mathbf{2 3}}{2(x+3)}-\frac{1}{2(x-1)}
\end{aligned}
$$

4.

$$
\begin{aligned}
\frac{8 x^{2}-2 x+19}{(1-x)\left(4+x^{2}\right)} & =\frac{A}{1-x}+\frac{B x+C}{4+x^{2}} \\
8 x^{2}-2 x+19 & =A\left(4+x^{2}\right)+(B x+C)(1-x)
\end{aligned}
$$

Let $x=1$,

$$
\begin{aligned}
8(1)^{2}-2(1)+19 & =5 A \\
A & =5
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
8(0)^{2}-2(0)+19 & =4(5)+C \\
C & =-1
\end{aligned}
$$

Comparing coefficient of x^{2} terms,

$$
\begin{aligned}
8 & =5-B \\
B & =-3 \\
\therefore \frac{8 x^{2}-2 x+19}{(1-x)\left(4+x^{2}\right)} & =\frac{\mathbf{5}}{\mathbf{1}-\boldsymbol{x}}-\frac{\mathbf{3} \boldsymbol{x}+\mathbf{1}}{\mathbf{4}+\boldsymbol{x}^{\mathbf{2}}}
\end{aligned}
$$

5. (a) By factor theorem and long division

$$
f(x)=(x-3)^{2}(2 x+1)
$$

(b) By Long Division,

$$
\frac{6 x^{3}-33 x^{2}+35 x+51}{2 x^{3}-11 x^{2}+12 x+9}=3+\frac{24-x}{(x-3)^{2}(2 x+1)}
$$

Hence,

$$
\begin{aligned}
\frac{24-x}{(x-3)^{2}(2 x+1)} & =\frac{A}{2 x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}} \\
-x+24 & =A(x-3)^{2}+B(x-3)(2 x+1)+C(2 x+1)
\end{aligned}
$$

Let $x=3$,

$$
\begin{aligned}
-(3)+24 & =7 C \\
C & =3
\end{aligned}
$$

Let $x=-\frac{1}{2}$

$$
\begin{aligned}
-\left(-\frac{1}{2}\right)+24 & =\frac{49}{4} A \\
A & =2
\end{aligned}
$$

Let $x=0$,

$$
\begin{aligned}
24 & =9(2)-3 B+3 \\
B & =-1 \\
\therefore \frac{6 x^{3}-33 x^{2}+35 x+51}{2 x^{3}-11 x^{2}+12 x+9} & =\mathbf{3}+\frac{\mathbf{2}}{\mathbf{2 x + 1}}-\frac{\mathbf{1}}{\boldsymbol{x}-\mathbf{3}}+\frac{\mathbf{3}}{(\boldsymbol{x}-\mathbf{3})^{\mathbf{2}}}
\end{aligned}
$$

5 Binomial Theorem

5.1 Full Solutions

1. (a)

$$
\begin{aligned}
T_{r+1} & =\binom{10}{r}\left(x^{2}\right)^{10-x}\left(-\frac{1}{2 x^{3}}\right)^{r} \\
& =\binom{10}{r}\left(-\frac{1}{2}\right)^{r}\left(x^{20-5 r}\right)
\end{aligned}
$$

For the independent term of x, x^{0}

$$
\begin{aligned}
20-5 r & =0 \\
r & =4
\end{aligned}
$$

Hence,

$$
\text { Independent term of } \begin{aligned}
x & =\binom{10}{4}\left(-\frac{1}{2}\right)^{4} \\
& =\mathbf{1 3} \frac{\mathbf{1}}{\mathbf{8}}
\end{aligned}
$$

(b) (i) (a)

$$
(2-3 x)^{7}=128-1344 x+6048 x^{2}+\ldots
$$

(b)

$$
\left(1+\frac{x}{3}\right)^{7}=1+\frac{7}{3} x+\frac{7}{3} x^{2}+\ldots
$$

(ii)

$$
\begin{aligned}
\left(2-\frac{7}{3} x-x^{2}\right)^{7} & =\left[(2-3 x)\left(1+\frac{x}{3}\right)\right]^{7} \\
& =\left(128-1344 x+6048 x^{2}+\ldots\right)\left(1+\frac{7}{3} x+\frac{7}{3} x^{2}+\ldots\right) \\
& =\ldots+\left[128\left(\frac{7}{3}\right)-1134\left(\frac{7}{3}\right)+6048\right] x^{2}+\ldots \\
& =\ldots+3210 \frac{2}{3} x^{2}+\ldots
\end{aligned}
$$

Coefficient of $x^{2}=\mathbf{3 2 1 0} \frac{\mathbf{2}}{\mathbf{3}}$
2. (a)

$$
\begin{aligned}
\text { LHS } & =\left(1+a x+b x^{2}\right)^{8} \\
& =1^{8}+\binom{8}{1}\left(1^{7}\right)\left(a x+b x^{2}\right)+\binom{8}{2}\left(1^{6}\right)\left(a x+b x^{2}\right)^{2}+\ldots \\
& =1+8\left(a x+b x^{2}\right)+28\left(a^{2} x^{2}+\ldots\right)+\ldots \\
& =1+8 a x+8 b x^{2}+28 a^{2} x^{2}+\ldots
\end{aligned}
$$

Comparing terms

$$
\begin{gathered}
-40=8 a \\
a=-5 \\
8 b+28(-5)^{2}=748 \\
b=6
\end{gathered}
$$

(b)

$$
\begin{aligned}
T_{r+1} & =\binom{16}{r}\left(x^{2}\right)^{16-r}\left(-\frac{1}{2 x^{6}}\right)^{r} \\
& =\binom{16}{r}\left(-\frac{1}{2}\right)^{r}\left(x^{32-8 r}\right)
\end{aligned}
$$

For the independent term of x, x^{0}

$$
\begin{aligned}
32-8 r & =0 \\
r & =4
\end{aligned}
$$

Hence,

$$
\text { Independent term of } \begin{aligned}
x & =\binom{16}{4}\left(-\frac{1}{2}\right)^{4} \\
& =\mathbf{1 1 3} \frac{\mathbf{3}}{\mathbf{4}}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
T_{r+1} & =\binom{9}{r}(x)^{9-r}\left(\frac{k}{x}\right)^{r} \\
& =\binom{9}{r}(k)^{r}\left(x^{9-2 r}\right)
\end{aligned}
$$

For x term,

$$
\begin{aligned}
9-2 r & =1 \\
r & =4
\end{aligned}
$$

For x^{3} term,

$$
\begin{aligned}
9-2 r & =3 \\
r & =3
\end{aligned}
$$

Since the coefficients are the same,

$$
\begin{aligned}
\binom{9}{4}(k)^{4} & =\binom{9}{3}(k)^{3} \\
k & =\frac{\mathbf{3}}{\mathbf{3}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\left(1-3 x^{2}\right)\left(x+\frac{k}{x}\right)^{9} & =\left(1-3 x^{2}\right)\left[\ldots+\binom{9}{3}(x)^{6}\left(\frac{2}{3 x}\right)^{3}+\binom{9}{4}(x)^{5}\left(\frac{2}{3 x}\right)^{4}+\ldots\right] \\
& =\left(1-3 x^{2}\right)\left[\ldots+\frac{224}{9} x^{3}+\frac{224}{9} x+\ldots\right]
\end{aligned}
$$

Hence,

$$
\text { Coefficient of } \begin{aligned}
x^{3} & =(1)\left(\frac{224}{9}\right)+(-3)\left(\frac{224}{9}\right) \\
& =-\mathbf{4 9} \frac{\mathbf{7}}{\mathbf{9}}
\end{aligned}
$$

3. (a) (i)

$$
(1+a)^{8}=1+8 a+\mathbf{2 8} a^{2}+\mathbf{5 6} a^{3}+\ldots
$$

(ii)

$$
\begin{aligned}
\left(1+x+x^{2}\right)^{8} & =1+8\left(x+x^{2}\right)+28\left(x+x^{2}\right)^{2}+56\left(x+x^{2}\right)^{3}+\ldots \\
& =1+8 x+8 x^{2}+28\left(x^{2}+2 x^{3}+\ldots\right)+56\left(x^{3}+\ldots\right) \\
& =\mathbf{1}+\mathbf{8} \boldsymbol{x}+\mathbf{3 6} \boldsymbol{x}^{\mathbf{2}}+\mathbf{1 1 2} \boldsymbol{x}^{\mathbf{3}}+\ldots
\end{aligned}
$$

(iii) By comparing

$$
\left(1+x+x^{2}\right)^{8} \quad 1.0101^{8}
$$

we can see that

$$
x=0.01
$$

Hence,

$$
\begin{aligned}
1.0101^{8} & =1+8(0.01)+36(0.01)^{2}+112(0.01)^{3}+\ldots \\
& =\mathbf{1 . 0 8 3 7 1 2} \text { (6.d.p.) }
\end{aligned}
$$

(b) (i)

$$
T_{r+1}=\binom{12}{r}(3 x)^{12-r}\left(-\frac{2}{x^{2}}\right)^{r}
$$

(ii)

$$
\begin{aligned}
T_{r+1} & =\binom{\mathbf{1 2}}{\boldsymbol{r}}(\mathbf{3} \boldsymbol{x})^{\mathbf{1 2 - r}}\left(-\frac{\mathbf{2}}{\boldsymbol{x}^{\mathbf{2}}}\right)^{\boldsymbol{r}} \\
& =\binom{12}{r}(3)^{12-r}(-2)^{r}(x)^{12-3 r} \\
& \therefore \text { Power of } x=\mathbf{1 2}-\mathbf{3} \boldsymbol{r}
\end{aligned}
$$

(iii) For the x^{5} term,

$$
\begin{aligned}
12-3 r & =5 \\
r & =\frac{7}{3} \notin \mathbb{Z}^{+} \quad \Rightarrow \Leftarrow
\end{aligned}
$$

Since r is not an integer, there is no x^{5} term
4. (a)

$$
\begin{aligned}
(3 x-1)(1-k x)^{7} & =(3 x-1)\left[(1)^{7}+\binom{7}{1}(1)^{6}(-k x)+\binom{7}{2}(1)^{5}(-k x)^{2}+\ldots\right] \\
& =(3 x-1)\left(1-7 k x+21 k^{2} x^{2}+\ldots\right)
\end{aligned}
$$

Since there is no x^{2} term,

$$
\begin{aligned}
&-7 k(3)+\left(21 k^{2}\right)(-1)=0 \\
&-21 k(1+k)=0 \\
& \therefore k=0 \text { (N.A.) } \quad \text { or } \quad k=-1
\end{aligned}
$$

(b)

$$
\begin{aligned}
T_{r+1} & =\binom{12}{r}\left(\frac{2}{x^{3}}\right)^{12-r}\left(-x^{2}\right)^{r} \\
& =\binom{12}{r}\left(2^{12-r}\right)(-1)^{r} x^{5 r-36}
\end{aligned}
$$

Since we are looking for the power of x first becomes positive,

$$
\begin{gathered}
5 r-36>0 \\
r> \\
\approx 8.2 \\
\approx 8 \\
\therefore T_{9}=\binom{12}{8}\left(2^{4}\right)(-1)^{8} x^{40-36} \\
=\mathbf{7 9 2 0} \boldsymbol{x}^{\mathbf{4}}
\end{gathered}
$$

5. (a)

$$
\begin{aligned}
T_{r+1} & =\binom{8}{r}(3)^{8-r}\left(-2 x^{2}\right)^{r} \\
& =\binom{8}{r}(3)^{8-r}(-2)^{r} x^{2 r}
\end{aligned}
$$

For the x^{10} term,

$$
\begin{gathered}
2 r=10 \\
r=5 \\
\text { Coefficient }=\binom{8}{5}(3)^{8-5}(-2)^{5} \\
=\mathbf{4 8 3 8 4}
\end{gathered}
$$

(b)

$$
\begin{aligned}
(1+3 x)^{m} & =1+\binom{m}{1}(1)^{m-1}(3 x)+\binom{m}{2}(1)^{m-2}(3 x)^{2}+\ldots \\
& =1+3 m x+\frac{9 m(m-1)}{2} x^{2}+\ldots
\end{aligned}
$$

Since the difference is 462 ,

$$
\begin{aligned}
& \frac{9 m(m-1)}{2}-3 m=462 \\
& 9 m^{2}-15 m-924=0 \\
& 3 m^{2}-5 m-308=0 \\
&(3 m+28)(m-11)=0 \\
& \therefore m=-\frac{28}{3}(\text { rej. }) \quad \text { or } \quad m=\mathbf{1 1}
\end{aligned}
$$

6 Exponential \& Logarithms

6.1 Full Solutions

1. (a) When $t=0$,

$$
\begin{aligned}
P & =300\left(2+5 e^{-k(0)}\right) \\
& =300(2+5) \\
& =\mathbf{2 1 0 0}
\end{aligned}
$$

(b) When $t=3, P=2400$

$$
\begin{aligned}
& 2400=300\left(2+5 e^{-3 k}\right) \\
& 6=5 e^{-3 k} \\
& e^{-3 k}=\frac{6}{5} \\
& k=-\frac{1}{3} \ln \left(\frac{6}{5}\right) \\
&=-0.0607738 \ldots \\
&=-\mathbf{0 . 0 6 0 8} \\
&\text { (3.s.f. })
\end{aligned}
$$

(c) When $t=5$,

$$
\begin{aligned}
P & =300\left(2+5 e^{\frac{5}{3} \ln \left(\frac{6}{5}\right)}\right) \\
& =2632.637 \ldots>1000
\end{aligned}
$$

Not necessary to replenish

2. (a) When $P_{0}=20000, P_{n}=22497.28, t=3$

$$
\begin{aligned}
22497.28 & =20000\left(1+\frac{r}{100}\right)^{3} \\
\left(1+\frac{r}{100}\right)^{3} & =1.124864 \\
1+\frac{r}{100} & =1.04 \\
r & =4
\end{aligned}
$$

(b) Since Mandy wants to double the principal amount,

$$
\begin{aligned}
\left(1+\frac{4}{100}\right)^{n} & =2 \\
1.04^{n} & =2 \\
n & =\frac{\lg 2}{\lg 1.04} \\
& =17.672987 \ldots \\
& =\mathbf{1 7 . 7} \text { years (3.s.f.) }
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\log _{3} 2 \times \log _{4} 3 \times \log _{5} 4 \times \ldots \times \log _{n+1} n & =\frac{\lg 2}{\lg 3} \times \frac{\lg 3}{\lg 4} \times \frac{\lg 4}{\lg 5} \times \ldots \times \frac{\lg n}{\lg (n+1)} \\
& =\frac{\lg 2}{\lg (\boldsymbol{n}+\mathbf{1})}
\end{aligned}
$$

(b)

$$
\begin{aligned}
6^{x+1}-6^{1-x} & =5 \\
6\left(6^{x}\right)-\frac{6}{6^{x}} & =5
\end{aligned}
$$

Let $u=6^{x}$

$$
\begin{aligned}
6 u-\frac{6}{u}-5 & =0 \\
6 u^{2}-5 u-6 & =0 \\
(3 u+2)(2 u-3) & =0 \\
\therefore u=\frac{3}{2} \quad \text { or } \quad u & =-\frac{2}{3}(\mathrm{rej})
\end{aligned}
$$

Hence,

$$
\begin{aligned}
6^{x} & =\frac{3}{2} \\
x & =\frac{\lg \left(\frac{3}{2}\right)}{\lg 6} \\
& =0.226294 \ldots \\
& =\mathbf{0 . 2 2 6} \text { (3.s.f.) }
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
2 \log _{2}(1-x)-\log _{2} x-2 & =\log _{2} 2 x+1 \\
\log _{2}\left[\frac{(1-x)^{2}}{x}\right]-\log _{2} 2 x & =3 \\
\log _{2}\left[\frac{\left.\frac{(1-x)^{2}}{x}\right]}{2 x}\right] & =3 \\
\frac{(1-x)^{2}}{2 x^{2}} & =2^{3} \\
1-2 x+x^{2} & =16 x^{2} \\
15 x^{2}+2 x-1 & =0 \\
(5 x-1)(3 x+1) & =0 \\
\therefore x=\frac{\mathbf{1}}{\mathbf{5}} \quad \text { or } \quad x & =-\frac{1}{3}(\text { rej. })
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{\left(\log _{x} y\right)^{3}}{\log _{y} x}-20 & =61 \\
\frac{\left(\log _{x} y\right)^{3}}{\left(\frac{1}{\log _{x} y}\right)} & =81 \\
\left(\log _{x} y\right)^{4} & =81
\end{aligned}
$$

$$
\begin{array}{rll}
\log _{x} y=3 & \text { or } & \log _{x} y=-3 \\
\boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}} & \text { or } & \boldsymbol{y}=\frac{\mathbf{1}}{\boldsymbol{x}^{\mathbf{3}}}
\end{array}
$$

5. (a)

$$
\begin{aligned}
3 \log _{3} x-\log _{x} 3 & =2 \\
3 \log _{3} x-\frac{1}{\log _{3} x} & =2
\end{aligned}
$$

Let $u=\log _{3} x$,

$$
\begin{aligned}
& 3 u-\frac{1}{u}=2 \\
& 3 u^{2}-2 u-1=0 \\
& (u-1)(3 u+1)=0 \\
& u=1 \quad \text { or } \quad u=-\frac{1}{3} \\
& \log _{3} x=1 \quad \text { or } \quad \log _{3} x=-\frac{1}{3} \\
& x=3 \quad \text { or } \quad x=3^{-\frac{1}{3}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 2 \log _{2}(1-2 x)-\log _{2}(6-5 x)=0 \\
& \log _{2}(1-2 x)^{2}=\log _{2}(6-5 x) \\
&(1-2 x)^{2}=6-5 x \\
& 1-4 x+4 x^{2}-6+5 x=0 \\
& 4 x^{2}+x-5=0 \\
&(x-1)(4 x+5)=0 \\
& \therefore x=1 \text { (rej) or } \quad x=-\frac{\mathbf{5}}{\mathbf{4}}
\end{aligned}
$$

7 Trigonometry

7.1 Full Solutions

1. (a) (i)

$$
\begin{aligned}
\text { LHS } & =\sin (A+B) \sin (A-B) \\
& =(\sin A \cos B+\cos A \sin B)(\sin A \cos B-\cos A \sin B) \\
& =\sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B \\
& =\sin ^{2} A\left(1-\sin ^{2} B\right)-\sin ^{2} B\left(1-\sin ^{2} A\right) \\
& =\sin ^{2} A-\sin ^{2} A \sin ^{2} B-\sin ^{2} B+\sin ^{2} A \sin ^{2} B \\
& =\sin ^{2} A-\sin ^{2} B \\
& =\text { RHS (shown) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\sin \left(\frac{7 \pi}{12}\right) \sin \left(\frac{\pi}{12}\right) & =\sin \left(\frac{\pi}{3}+\frac{\pi}{4}\right) \sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\sin ^{2}\left(\frac{\pi}{3}\right)-\sin ^{2}\left(\frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2} \\
& =\frac{1}{4}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\text { LHS } & =\frac{\sec ^{2} x+2 \tan x}{1+2 \sin x \cos x} \\
& =\frac{\left(\frac{1}{\cos ^{2} x}+\frac{2 \sin x}{\cos x}\right)}{1+2 \sin x \cos x} \\
& =\frac{\left(\frac{1+2 \sin x \cos x}{\cos ^{2} x}\right)}{1+2 \sin x \cos x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\sec ^{2} x \\
& =\text { RHS (shown) }
\end{aligned}
$$

(ii) Comparing part (b)(i) and (b)(ii),

$$
\begin{aligned}
\sec ^{2}\left(x-\frac{\pi}{3}\right) & =\frac{4}{3} \\
\cos \left(x-\frac{\pi}{3}\right) & = \pm \frac{\sqrt{3}}{2}
\end{aligned}
$$

By solving this,

$$
\alpha=\frac{\pi}{6}
$$

$\therefore x=\frac{\pi}{6} \quad x=\frac{\pi}{2} \quad x=\frac{7 \pi}{6} \quad x=\frac{3 \pi}{2}$
2. (a) Draw a line as shown and let the new points be O and M

In $\triangle O D A$,

$$
\begin{aligned}
\sin \theta & =\frac{O D}{A D} \\
O D & =1.9 \sin \theta
\end{aligned}
$$

In $\triangle C D M$,

$$
\begin{aligned}
\cos \theta & =\frac{D M}{D C} \\
D M & =0.9 \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
\therefore L & =O D+D M \\
& =1.9 \sin \theta+0.9 \cos \theta \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
R & =\sqrt{(1.9)^{2}+(0.9)^{2}} \\
& =\sqrt{4.42} \\
\alpha & =\tan ^{-1}\left(\frac{0.9}{1.9}\right) \\
& =25.346175 \ldots \\
& =25.3^{\circ}(1 . \text { d.p. }) \\
\therefore L= & \sqrt{4.42} \sin \left(\boldsymbol{\theta}+\mathbf{2 5 . 3 ^ { \circ }}\right)
\end{aligned}
$$

(c) At maximum L,

$$
\begin{aligned}
L & =\sqrt{4.42} \\
& =2.102379 \ldots \\
& =\mathbf{2 . 1 0} \mathbf{~ m ~ (3 . s . f .)}
\end{aligned}
$$

This occurs when

$$
\begin{aligned}
\sin \left(\theta+25.346^{\circ}\right) & =1 \\
\therefore \theta & =90^{\circ}-\tan ^{-1}\left(\frac{0.9}{1.9}\right) \\
& =64.653824 \ldots \\
& =\mathbf{6 4 . 7 ^ { \circ }} \text { (1.d.p.) }
\end{aligned}
$$

(d) When $L=1.3 \mathrm{~m}$,

$$
\begin{aligned}
1.3 & =\sqrt{4.42} \sin \left[\theta+\tan ^{-1}\left(\frac{0.9}{1.9}\right)\right] \\
\theta+\tan ^{-1}\left(\frac{0.9}{1.9}\right) & =\sin ^{-1}\left(\frac{1.3}{\sqrt{4.42}}\right)(\text { Quadrant } 1) \\
\therefore \theta & =\sin ^{-1}\left(\frac{1.3}{\sqrt{4.42}}\right)-\tan ^{-1}\left(\frac{0.9}{1.9}\right) \\
& =12.849339 \ldots \\
& =\mathbf{1 2 . 8}{ }^{\circ}(\mathbf{1 . d . p .})
\end{aligned}
$$

3. (a)

$$
a=-4 \quad b=10 \quad c=\mathbf{3}
$$

(b) When it first emerge from the water, $h=0$,

$$
\begin{aligned}
-4 \sin \left(\frac{\pi}{10} t\right)+3 & =0 \\
\sin \left(\frac{\pi}{10} t\right) & =\frac{3}{4}
\end{aligned}
$$

Since we are looking for the point where it first emerges from the water, 2nd quadrant

$$
\begin{aligned}
t & =\frac{10\left(\pi-\sin ^{-1}\left(\frac{3}{4}\right)\right)}{\pi} \\
& =7.300534 \ldots \\
& =7.30 \mathrm{~s}(3 . \mathrm{s.f.})
\end{aligned}
$$

4. (a)

$$
\begin{gathered}
\angle B O C=\frac{360^{\circ}}{2(12)} \\
=15^{\circ} \\
\sin \angle B O C=\frac{B C}{B O} \\
B C=\sin 15^{\circ} \\
\therefore A B=2 \sin 15^{\circ} \text { (shown) }
\end{gathered}
$$

(b) (i)

$$
\cos 30^{\circ}=1-2 \sin ^{2} 15^{\circ}
$$

(ii)

$$
\begin{aligned}
2 \sin ^{2} 15^{\circ} & =1-\frac{\sqrt{3}}{2} \\
\sin ^{2} 15^{\circ} & =\frac{2-\sqrt{3}}{4} \\
\sin 15^{\circ} & =\frac{1}{2} \sqrt{2-\sqrt{3}} \text { (shown) }
\end{aligned}
$$

5. (a)

$$
\text { Principal values }=-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

(b) Given the ratio,

$\sin A$	$\cos A$	$\tan A$
$-\frac{p}{\sqrt{p^{2}+1}}$	$\frac{1}{\sqrt{p^{2}+1}}$	$-p$

(i)

$$
\sin A=-\frac{\boldsymbol{p}}{\sqrt{\boldsymbol{p}^{2}+\mathbf{1}}}
$$

(ii)

$$
\begin{aligned}
\sec A & =\frac{1}{\cos A} \\
& =\frac{1}{\left(\frac{1}{\sqrt{\boldsymbol{p}^{2}+\mathbf{1}}}\right)} \\
& =\sqrt{\boldsymbol{p}^{2}+\mathbf{1}}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\cot (-A)^{\circ} & =\frac{1}{\tan (-A)} \\
& =-\frac{1}{\tan A} \\
& =-\frac{1}{(-p)} \\
& =\frac{\mathbf{1}}{\boldsymbol{p}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\tan (90-A)^{\circ} & =\cot A \\
& =\frac{1}{\tan A} \\
& =\frac{1}{(-p)} \\
& =-\frac{\mathbf{1}}{p}
\end{aligned}
$$

(c) When $x=-\frac{\pi}{12}, y=-4$

$$
\begin{aligned}
-4 & =m+3 \tan \left[3\left(-\frac{\pi}{12}\right)\right] \\
m & =-\mathbf{1}
\end{aligned}
$$

From the graph, to find n, we are in quadrant 4. Hence, at $(n, 2)$,

$$
\begin{aligned}
2 & =-1+3 \tan 3 n \\
3 n=\frac{\pi}{4} \quad & \text { or } \quad 3 n=\frac{5 \pi}{4} \\
n & =\frac{\mathbf{5 \pi}}{\mathbf{1 2}}
\end{aligned}
$$

6. (a) (i)

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
\frac{56}{65} & =\sin A \cos B+\frac{4}{13} \\
\therefore \sin A \cos B & =\frac{\mathbf{3 6}}{\mathbf{6 5}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{\tan A}{\tan B} & =\frac{\left(\frac{\sin A}{\cos A}\right)}{\left(\frac{\sin B}{\cos B}\right)} \\
& =\frac{\sin A \cos B}{\sin B \cos A} \\
& =\frac{\left(\frac{36}{65}\right)}{\left(\frac{4}{13}\right)} \\
& =\frac{\mathbf{9}}{\mathbf{5}}
\end{aligned}
$$

(iii) Given the ratio

$\sin (A+B)$	$\cos (A+B)$	$\tan (A+B)$
$\frac{56}{65}$	$-\frac{33}{65}$	$-\frac{33}{56}$
	$\therefore \cos (A+B)=-\frac{\mathbf{3 3}}{\mathbf{6 5}}$	

(b) (i)

$$
\begin{aligned}
R & =\sqrt{(3)^{2}+(1)^{2}} \\
& =\sqrt{10} \\
\alpha & =\tan ^{-1}\left(\frac{1}{3}\right) \\
& =0.32175 \ldots \\
& =0.321 \text { (3.s.f.) } \\
\therefore 3 \sin \theta+\cos \theta & =\sqrt{10} \sin (\theta+0.322)
\end{aligned}
$$

(ii) Hence, to solve the equation,

$$
\begin{gathered}
\sqrt{10} \sin \left[2 y+\tan ^{-1}\left(\frac{1}{3}\right)\right]=2 \\
\sin \left[2 y+\tan ^{-1}\left(\frac{1}{3}\right)\right]=\frac{2}{\sqrt{10}} \\
\alpha=\sin ^{-1}\left(\frac{2}{\sqrt{10}}\right) \quad(\text { Quadrant } 1 \& 2)
\end{gathered}
$$

For Quadrant 1,

$$
\begin{aligned}
y & =\frac{\sin ^{-1}\left(\frac{2}{\sqrt{10}}\right)-\tan ^{-1}\left(\frac{1}{3}\right)}{2} \\
& =0.181484 \ldots \\
& =\mathbf{0 . 1 8 1} \mathbf{r a d}(3 . \text {.s.f. })
\end{aligned}
$$

For Quadrant 2,

$$
\begin{aligned}
y & =\frac{\pi-\sin ^{-1}\left(\frac{2}{\sqrt{10}}\right)-\tan ^{-1}\left(\frac{1}{3}\right)}{2} \\
& =1.067561 \ldots \\
& =\mathbf{1 . 0 7} \mathrm{rad}(\mathbf{3 . s . f .})
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Greatest value } & =\frac{1}{-\sqrt{10}+5} \\
& =\frac{\mathbf{5}+\sqrt{\mathbf{1 0}}}{15}
\end{aligned}
$$

8 Coordinate Geometry

8.1 Full Solutions

1. (a) Since S is on a point on the y-axis let S be $(0, y)$, using the length of $P S$,

$$
\begin{aligned}
& \sqrt{(-2-0)^{2}+(1-y)^{2}}=2 \sqrt{10} \\
& 4+1-2 y+y^{2}=40 \\
& y^{2}-2 y-35=0 \\
&(y-7)(y+5)=0 \\
& y=7(\mathrm{rej}) \quad \text { or } \quad y=-5 \\
& \therefore S(\mathbf{0}, \mathbf{- 5})
\end{aligned}
$$

(b)

$$
\text { Gradient of } \begin{aligned}
P S & =\frac{1-(-5)}{-2-0} \\
& =-3
\end{aligned}
$$

Since $P S$ is perpendicular to $P Q$,

$$
\text { Gradient of } \begin{aligned}
P Q & =\frac{-1}{(-3)} \\
& =\frac{1}{3}
\end{aligned}
$$

Hence, the equation of $P Q$ is,

$$
\begin{aligned}
y-1 & =\frac{1}{3}(x+2) \\
3 y & =x+5
\end{aligned}
$$

Hence, substituting $Q(2 q+1, q)$,

$$
\begin{aligned}
3 q & =(2 q+1)+5 \\
q & =\mathbf{6}
\end{aligned}
$$

(c) Using $q=6$,

$$
\text { Length of } \begin{aligned}
P Q & =\sqrt{(13+2)^{2}+(6-1)^{2}} \\
& =\sqrt{250} \text { units }
\end{aligned}
$$

Hence, to find the area of rectangle $P Q R S$,

$$
\begin{aligned}
\text { Area } & =\sqrt{250} \times 2 \sqrt{10} \\
& =\mathbf{1 0 0} \text { units }^{2}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\text { Gradient of } A C & =\frac{4-(-1)}{-1-4} \\
& =-1 \\
\text { Midpoint of } A C= & \left(\frac{-1+4}{2}, \frac{4-1}{2}\right) \\
= & \left(\frac{3}{2}, \frac{3}{2}\right)
\end{aligned}
$$

Note that $B D$ and $A C$ share the same mid-point due to the properties of a parallelogram. Also note that $A C$ is perpendicular to $B D$

$$
\text { Gradient of } \begin{aligned}
B D & =\frac{\left(6-\frac{3}{2}\right)}{\left(p-\frac{3}{2}\right)} \\
& =-1 \\
\frac{3}{2}-p & =6-\frac{3}{2} \\
p & =6(\text { shown })
\end{aligned}
$$

(b) Since we note that the midpoint of $B D$ is $\left(\frac{3}{2}, \frac{3}{2}\right)$, they have the same x and y coordinate, just like point B. Hence, we can make an inference that D will have the same properties. Also note that the equation of line $B D$ is

$$
y=x
$$

Let $D(a, a)$. Comparing coordinates,

$$
\begin{aligned}
\frac{a+6}{2} & =\frac{3}{2} \\
a & =-3
\end{aligned}
$$

Hence,

$$
\therefore D(-3,-3)
$$

(c)

$$
\text { Area of parallelogram } \begin{aligned}
A B C D & =\frac{1}{2}\left|\begin{array}{ccccc}
-3 & 4 & 6 & -1 & -3 \\
-3 & -1 & 6 & 4 & -3
\end{array}\right| \\
& =\frac{1}{2}|54+36| \\
& =\mathbf{4 5} \text { units }^{\mathbf{2}}
\end{aligned}
$$

3. (a) (i)

$$
\begin{aligned}
& \begin{aligned}
& \text { Midpoint of } A D=\left(\frac{7-3}{2}, \frac{4+8}{2}\right) \\
&=(2,6)
\end{aligned} \\
& \text { Gradient of } A D=\frac{8-4}{-3-7} \\
& =-\frac{2}{5}
\end{aligned} \begin{aligned}
\text { Gradient of perpendicular bisector } & =\frac{-1}{\left(-\frac{2}{5}\right)} \\
& =\frac{5}{2}
\end{aligned}
$$

Hence, the equation of the perpendicular bisector of $A D$ is

$$
\begin{aligned}
y-6 & =\frac{5}{2}(x-2) \\
\boldsymbol{y} & =\frac{\mathbf{5}}{\mathbf{2}} \boldsymbol{x}+\mathbf{1}
\end{aligned}
$$

To check if F lies on the perpendicular bisector, we shall substitute the coordinates of F into the equation of the line. When $x=-4$,

$$
\begin{aligned}
y & =\frac{5}{2}(-4)+1 \\
& =-9
\end{aligned}
$$

Since the x and y coordinates match with F, the line passes through F
(ii)

$\triangle A D F$ is an isosceles triangle

(b) By inspection,

$$
B\left(-3 \frac{1}{3}, 2 \frac{1}{3}\right)
$$

(c) Note that

$$
\begin{aligned}
\frac{\text { Area of } A B C D}{\text { Area of } \triangle A D F} & =\frac{\text { base } \times h_{1}}{\frac{1}{2}(\text { base })\left(h_{2}\right)} \\
& =\frac{h_{1}}{\frac{1}{2}\left(h_{2}\right)} \\
& =\frac{1}{\frac{1}{2}(3)} \\
& =\frac{2}{3}
\end{aligned}
$$

Hence,

$$
\text { Area of } \begin{aligned}
A B C D & =\frac{2}{3} \times 87 \\
& =\mathbf{5 8} \mathbf{u n i t s}^{2}
\end{aligned}
$$

4. (a)

$$
\begin{align*}
& A(6,6) \quad B(x, y) C(0, y) \\
& A B=B C \\
& \sqrt{(6-x)^{2}+(6-y)^{2}}=\sqrt{20} \tag{1}\\
&(6-x)^{2}+(6-y)^{2}= 20 \ldots . .(1
\end{align*}
$$

Using the equation of $A B$,

$$
\begin{align*}
y+2 x & =18 \\
y & =18-2 x \tag{2}
\end{align*}
$$

Substitute Equation (2) into Equation (1),

$$
\begin{array}{rlrl}
36-12 x+x^{2}+[6-(18-2 x)]^{2} & =20 \\
36-12 x+x^{2}+4 x^{2}-48 x+144 & =20 \\
5 x^{2}-60 x+160 & =0 \\
(x-8)(x-4) & =0 \\
x=4 & \text { or } & x=8 \\
y=10 & \text { or } & y=2 \\
(4,10) & \text { or } & (8,2) \quad \text { (N.A.) }
\end{array}
$$

Hence,

$$
\begin{gathered}
A(6,6) \quad B(4,10) \quad \boldsymbol{C}(\mathbf{0}, \mathbf{1 0}) \\
\text { Gradient of } B C=\frac{10-10}{4-0} \\
=0 \\
\therefore \boldsymbol{y}=\mathbf{1 0}
\end{gathered}
$$

(b)

$$
\begin{aligned}
\text { Midpoint of } B C & =\left(\frac{6+0}{2}, \frac{10+6}{2}\right) \\
& =(\mathbf{3}, \mathbf{8})
\end{aligned}
$$

(c)

Shown from part (a)
(d)

$$
\text { Area of parallelogram } \begin{aligned}
A B C D & =\frac{1}{2}\left|\begin{array}{ccccc}
0 & 3 & 4 & 0 & 0 \\
0 & 8 & 10 & 10 & 0
\end{array}\right| \\
& =\frac{1}{2}|70-32| \\
& =\mathbf{1 9} \text { units }^{\mathbf{2}}
\end{aligned}
$$

5. (a)

> Gradient of $A B=2$
> \therefore Gradient of $l_{1}=-\frac{1}{2}$

Hence, substituting $P(2,3)$,

$$
\begin{aligned}
& y-3=-\frac{1}{2}(x-2) \\
& \therefore y=-\frac{1}{2} x+4
\end{aligned}
$$

(b) Substitute $x=4$ into the equation of l_{1},

$$
\begin{aligned}
y & =-\frac{1}{2}(4)+4 \\
& =2
\end{aligned}
$$

Hence, $(4,2)$ is a point of the line (shown)
(c) Let the coordinates be $D(x, y)$

$$
\text { Midpoint of } A B=\left(\frac{4+x}{2}, \frac{2+y}{2}\right)=(2,3)
$$

Hence,

$$
\therefore D(0,4)
$$

(d)

$$
\begin{gather*}
\text { Length of } C P=\sqrt{(4-2)^{2}+(2-3)^{2}} \\
=\sqrt{5} \\
\sqrt{(x-2)^{2}+(y-3)^{2}}=\sqrt{5} \ldots \ldots .(1) \tag{1}
\end{gather*}
$$

Since A lies on the line $y+1=2 x$,

$$
\begin{equation*}
y=2 x-1 \tag{2}
\end{equation*}
$$

Substitute Equation (2) into Equation (1),

$$
\begin{aligned}
& \sqrt{(x-2)^{2}+(2 x-1-3)^{2}}=\sqrt{5} \\
& x^{2}-4 x+4+4 x^{2}-16 x+16=5 \\
& 5 x^{2}-20 x+15=0 \\
&(x-3)(x-1)=0 \\
& \therefore x=3 \quad \text { or } \quad x=1(\mathrm{rej})
\end{aligned}
$$

Substitute $x=3$ into Equation (2),

$$
\begin{aligned}
& y=2(3)-1 \\
&=5 \\
& \therefore \boldsymbol{A}(\mathbf{3}, \mathbf{5})
\end{aligned}
$$

(e)

$$
\text { Area of parallelogram } \begin{aligned}
A B C D & =\frac{1}{2}\left|\begin{array}{ccccc}
3 & 0 & 0 & 4 & 3 \\
5 & 4 & -1 & 2 & 5
\end{array}\right| \\
& =\frac{1}{2}|32-2| \\
& =\mathbf{1 5} \text { units }^{\mathbf{2}}
\end{aligned}
$$

9 Further Coordinate Geometry

9.1 Full Solutions

1. (a) Let the centre be $C(-1, b)$

$$
\begin{aligned}
& \frac{6-b}{3+1}=\frac{3}{4} \\
& b=3 \\
& \therefore C(-1,3) \\
& \text { Radius }= \sqrt{(-1-3)^{2}+(3-6)^{2}} \\
&=5 \text { units }
\end{aligned}
$$

Hence, the equation of the circle C is

$$
\begin{aligned}
(x+1)^{2}+(y-3)^{2} & =25 \\
x^{2}+y^{2}+2 x-6 y-15 & =0 \text { (shown) }
\end{aligned}
$$

(b) When $y=0$,

$$
\begin{gathered}
\quad(x+1)^{2}+9=25 \\
x=3 \quad \text { or } \quad x=-5
\end{gathered}
$$

Since the circle meets the x-axis at 2 distinct points, the x-axis is not tangent (c)

$$
\begin{aligned}
\text { Shortest distance } & =\sqrt{(5)^{2}-(1)^{2}} \\
& =\sqrt{24} \\
& =4.90 \text { units }
\end{aligned}
$$

2. (a) Let the x-coordinates of the centre of the circle be a

$$
\begin{aligned}
(17-a)^{2} & =(a-1)^{2}+8^{2} \\
289-34 a+a^{2} & =a^{2}-2 a+1+64 \\
224 & =32 a \\
a & =7 \\
\text { Radius }=17 & -7 \\
=10 & \text { units (shown) }
\end{aligned}
$$

(b)

$$
\text { Centre }=(\mathbf{7}, \mathbf{1})
$$

(c)

$$
\begin{gathered}
(x-7)^{2}+(y-1)^{2}=10^{2} \\
\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}-\mathbf{1 4} \boldsymbol{x}-\mathbf{2} \boldsymbol{y}-\mathbf{5 0}=\mathbf{0}
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \text { Centre of reflected circle }=(7,-3) \\
& \begin{aligned}
\text { Distance } & =\sqrt{(3-7)^{2}+(10+3)^{2}} \\
& =\sqrt{185} \\
& =13.601 \ldots>0 \text { (shown) }
\end{aligned}
\end{aligned}
$$

3. (a)

$$
\begin{gathered}
3 x^{2}-30 x+75-12 y+3 y^{2}=0 \\
x^{2}+y^{2}-10 x-4 y+25=0 \\
\text { Centre }=(5, \mathbf{2}) \\
\text { Radius }=\sqrt{(5)^{2}+(2)^{2}-25} \\
=\mathbf{2} \text { units }
\end{gathered}
$$

(b) Since the y-coordinate of the centre of C_{1} is 2 and radius of the circle is also 2 units, thus the circle C_{1} touches the x-axis
(c)

$$
\begin{gathered}
\text { Centre }=(5,2) \\
\text { Radius }=\sqrt{(5-1)^{2}+(2-6)^{2}} \\
=4 \sqrt{2} \text { units }
\end{gathered}
$$

Hence, the equation of the circle C_{2} is

$$
\begin{aligned}
& (x-5)^{2}+(y-2)^{2}=(4 \sqrt{2})^{2} \\
& (x-5)^{2}+(y-2)^{2}=32 \\
& \boldsymbol{x}^{2}+\boldsymbol{y}^{2}-\mathbf{1 0} \boldsymbol{x}-\mathbf{4} \boldsymbol{y}-\mathbf{2}=\mathbf{0}
\end{aligned}
$$

(d)

$$
\text { Radius of } C_{2}=4 \sqrt{2}
$$

Let $B(x, y)$

$$
\begin{aligned}
& \quad\left(\frac{x+1}{2}, \frac{y+6}{2}\right)=(5,-2) \\
& \therefore x=9 \quad \text { or } \quad y=-2 \\
& \text { Gradient of line }=\frac{4}{-4} \\
& =-1
\end{aligned} \text { Gradient of tangent at } B=1 .
$$

Hence, the equation of the tangent is

$$
\begin{gathered}
y-(-2)=(x-9) \\
y=x-11
\end{gathered}
$$

(e) Let $P(x, 6)$,

$$
\begin{aligned}
&(x-5)^{2}+(6-2)^{2}=32 \\
&(x-5)^{2}=32-16 \\
& x=9 \quad \text { or } \quad x=1 \text { (N.A) } \\
& \therefore \boldsymbol{x}=\mathbf{9}
\end{aligned}
$$

4. (a)

$$
\begin{gathered}
\text { Radius }=5 \text { units } \\
\text { Centre }=(-2,0) \\
\therefore(\boldsymbol{x}+\mathbf{2})^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}=\mathbf{2 5}
\end{gathered}
$$

(b) The centre has changed to

$$
\begin{gathered}
\text { Centre }=(0,2) \\
\therefore \boldsymbol{x}^{2}+(\boldsymbol{y}-\mathbf{2})^{2}=\mathbf{2 5}
\end{gathered}
$$

5. (a) At the x-intercept, $y=0$

$$
\therefore Q(2,0)
$$

$$
\begin{aligned}
\text { Radius } & =\sqrt{(2)^{2}+(2)^{2}} \\
& =\sqrt{8}
\end{aligned}
$$

Hence, the equation of the circle C_{1} is

$$
\begin{gathered}
(x-2)^{2}+y^{2}=8 \\
\therefore \boldsymbol{x}^{\boldsymbol{2}}+\boldsymbol{y}^{\boldsymbol{2}}-\boldsymbol{4} \boldsymbol{x}-\mathbf{4}=\mathbf{0}
\end{gathered}
$$

(b) Q is the midpoint of $A P$. Let $P(x, y)$

$$
\begin{gathered}
\left(\frac{x+0}{2}, \frac{y+2}{2}\right)=(2,0) \\
P(4,-2) \\
\text { Radius }=2 A Q \\
=2 \sqrt{8}
\end{gathered}
$$

Hence, the equation of the circle C_{2} is

$$
\begin{gathered}
(x-4)^{2}+(y+2)^{2}=4(8) \\
\therefore \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}-\mathbf{8} \boldsymbol{x}+\boldsymbol{4} \boldsymbol{y}-\mathbf{1 2}=\mathbf{0}
\end{gathered}
$$

(c) Substitute $B(k, 0)$,

$$
\begin{aligned}
& k^{2}+(0)^{2}-8(k)+4(0)-12=0 \\
& k^{2}-8 k-12=0 \\
& k=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(1)(-12)}}{2(1)} \\
& =\frac{8 \pm \sqrt{112}}{2} \\
& =\frac{8 \pm 4 \sqrt{17}}{2}(\text { rej -ve }) \\
& \therefore \boldsymbol{k}=\mathbf{4}+\mathbf{2} \sqrt{\mathbf{7}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\text { Gradient of radius } & =\frac{0+2}{4+2 \sqrt{7}-4} \\
& =\frac{1}{\sqrt{7}} \\
\text { Gradient of tangent } & =\frac{-1}{\left(\frac{1}{\sqrt{7}}\right)} \\
& =-\sqrt{7} \text { (shown) }
\end{aligned}
$$

At the y-axis,

$$
\begin{aligned}
& 0=-\sqrt{7}(4+2 \sqrt{7})+c \\
& c=\mathbf{4} \sqrt{\mathbf{7}}+\mathbf{1 4} \text { (shown) }
\end{aligned}
$$

10 Linear Law

10.1 Full Solutions

1.

$$
\begin{aligned}
y & =\frac{x}{b \sqrt{x}-a} \\
\frac{y}{x} & =b \sqrt{x}-a
\end{aligned}
$$

Let

$$
\begin{gathered}
Y=\frac{x}{y} \quad X=\sqrt{x} \\
Y=b X-a
\end{gathered}
$$

To find the gradient,

$$
\begin{aligned}
b & =\frac{11-3}{3-5} \\
& =-4
\end{aligned}
$$

When $X=5$ and $Y=3$,

$$
\begin{aligned}
3 & =-4(5)-a \\
& a=-23 \\
\therefore \boldsymbol{a}= & -\mathbf{2 3} \quad b=-4
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
& \text { Gradient }=\frac{12-8}{2-3} \\
&=-4 \\
& \lg y=-4 x^{2}+c
\end{aligned}
$$

Substitute $(3,8)$,

$$
\begin{aligned}
& 8=-4(3)+c \\
& c=20 \\
& \lg y=-4 x^{2}+20 \\
& \boldsymbol{y}=\mathbf{1 0}^{-\mathbf{4} \boldsymbol{x}^{2}+\mathbf{2 0}}
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
& \sqrt{y}=a\left(x^{2}+b\right) \\
& \sqrt{y}=a x^{2}+a b
\end{aligned}
$$

Hence, we are plotting a graph of \sqrt{y} against x^{2}

x^{2}	1	3.24	12.25	18.49	30.25
\sqrt{y}	4	10.7	37.7	56.5	91.7

(ii) From the graph,

$$
\begin{gathered}
a=\frac{81-20.1}{26.5-6.2} \\
=\mathbf{3} \\
a b=1.5 \\
b=\frac{\mathbf{1}}{\mathbf{2}}
\end{gathered}
$$

(iii) From the graph, when $y=36, \sqrt{y}=6$

$$
x=1.5
$$

3. (a)

$$
\begin{aligned}
V & =V_{0} e^{k t} \\
V & =k t+\ln V_{0}
\end{aligned}
$$

Plot a graph of V against t

t	1	4	7	9
$\ln V$	6.86	6.72	6.59	6.48

(b) From the graph,

$$
\begin{aligned}
\ln V_{0} & =6.905 \\
V_{0} & =e^{6.905} \\
& =997.2485 \ldots \\
& =\mathbf{9 9 7} \text { (3.s.f.) }
\end{aligned}
$$

V_{0} represents the initial starting price of the mobile phone
(c) From the graph,

$$
\begin{aligned}
k & =\frac{6.8-6.5}{2.29-8.8} \\
& =-\frac{10}{217} \\
& =-0.046082 \ldots \\
& =-\mathbf{0 . 0 4 6 1} \text { (3.s.f.) }
\end{aligned}
$$

(d) Assuming that the model is appropriate, substitute the values of V_{0} and k in

$$
\begin{aligned}
V & =\left(e^{6.905}\right) e^{-\frac{10}{217}(15)} \\
& =499.574012 \ldots \\
& =\$ 500 \text { (3.s.f.) }
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
e^{y}-1 & =\frac{1.6-1}{0.5-0.2}\left(x^{2}-0.2\right) \\
e^{y}-1 & =2\left(x^{2}-0.2\right) \\
e^{y} & =2 x^{2}+0.6
\end{aligned}
$$

Hence, when $x=0$,

$$
\therefore e^{y}=\mathbf{0 . 6}
$$

(b)

$$
\begin{aligned}
& \ln e^{y}=\ln \left(2 x^{2}+0.6\right) \\
& \therefore \boldsymbol{y}=\ln \left(\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{0 . 6}\right)
\end{aligned}
$$

5. (a) Table

$x^{2} y$	2.601	2.20	1.75	1.42	1.00	0.61

(b)

$$
\begin{aligned}
y & =\frac{h}{k x}+\frac{1}{k x^{2}} \\
x^{2} y & =\frac{h}{k} x+\frac{1}{k}
\end{aligned}
$$

Hence, we are plotting $x^{2} y$ against x

(c) (i) When $x=2.5$,

$$
\begin{aligned}
x^{2} y & =2 \\
y & =\frac{2}{(2.5)^{2}} \\
& =\mathbf{0 . 3 2}
\end{aligned}
$$

(ii) From the graph,

$$
\begin{aligned}
\frac{1}{k} & =3 \\
k & =\frac{\mathbf{1}}{\mathbf{3}}
\end{aligned}
$$

(iii) From the graph,

$$
\begin{aligned}
\frac{h}{k} & =\frac{2.44-0.8}{1.4-5.5} \\
h & =-\frac{\mathbf{2}}{\mathbf{1 5}}
\end{aligned}
$$

11 Proofs of Plane Geometry

11.1 Full Solutions

1. (a) (i)

$$
\begin{gathered}
\angle A C F=\angle F G C \text { (alternate segment theorem) } \\
\angle A C F=\angle E F C \text { (alternate angles) } \\
\therefore \angle F G C=\angle E F C \text { (A) } \\
\angle E F C=\angle F C G(\text { common angles })(\mathrm{A})
\end{gathered}
$$

By the AA similarity test, $\triangle E C F$ and $\triangle F C G$ are similar
(ii) From part (a)(i),

$$
\frac{E C}{F C}=\frac{C F}{C G}
$$

Hence,

$$
E C \times C G=(C F)^{2}
$$

(b)

$$
\begin{aligned}
& \angle G E F=\angle H E C \text { (vertically opposite angles) (A) } \\
& \angle F G E=\angle C H E \text { (angles in the same segment) (A) }
\end{aligned}
$$

By the AA similarity test, $\triangle F G E$ and $\triangle C H E$ are similar
From the similar triangles,

$$
\begin{aligned}
& \frac{F E}{E C}=\frac{E G}{E H} \\
(F E)(E H) & =(E G)(E C) \\
& =(C G-E C)(E C) \\
& =(C G)(E C)-(E C)^{2} \\
& =C F^{2}-E C^{2}(\text { shown })
\end{aligned}
$$

2. (a)

$$
\angle A B P=\angle A P Q \text { (alternate segment theorem) }
$$

Since $P A$ bisects $\angle Q P B$,

$$
\angle A P Q=\angle A P B
$$

$\therefore \angle A B P=\angle A P B$ (angles of an isosceles triangle $A P B)$
Hence,

$$
A P=A B(\text { shown })
$$

(b)

$$
\begin{gathered}
\angle A C B=\angle A P B \text { (angles in the same segment) } \\
\angle A C P=\angle A B P=\angle A P B(\text { angles in the same segment }) \\
\therefore \angle A C B=\angle A C P
\end{gathered}
$$

Hence,

$$
C D \text { bisects } \angle P C B \text { (shown) }
$$

(c)

$$
\angle A C B=\angle A C P(\text { from part }(\mathrm{b}))
$$

$$
\angle C P D=\angle C A B(\text { angles in the same segment })
$$

Hence,
$\triangle C D X$ and $\triangle C B A$ are similar
3. (a)

$$
\begin{gathered}
\angle B C A=\angle A C E \text { (common angles) (A) } \\
\angle A B C=\angle C A Y \text { (alternate segment theorem) } \\
=\angle E A C(A C \text { bisects } \angle D A Y)(\mathrm{A})
\end{gathered}
$$

\therefore By the AA similarity test, $\triangle B A C$ and $\triangle A E C$ are similar

$$
\begin{aligned}
\frac{A C}{E C} & =\frac{B C}{A C} \\
A C^{2} & =E C \times B C \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{gathered}
\angle C A Y=\angle E A C(A C \text { bisects } \angle D A Y) \\
\angle B A X=\angle E A B(A B \text { bisects } \angle B A X) \\
\angle B A X+\angle E A B+\angle E A C+\angle C A Y=180^{\circ} \text { (angles on a straight line) } \\
2 \angle E A B+2 \angle E A C=180^{\circ} \\
\angle E A B+\angle E A C=\angle B A C=90^{\circ}
\end{gathered}
$$

Since $\angle B A C=90^{\circ}, B C$ is a diameter of the circle (shown)
(c)

$$
\begin{gathered}
\angle A B E=\angle C A Y \text { (alternate segment theorem) } \\
\angle C A Y=\angle E A C(A C \text { bisects } \angle B A Y) \\
\therefore \angle A B E=\angle E A C \\
\angle E A B+\angle E A C=\angle E A B+\angle A B E=90^{\circ} \text { (from part (b)) } \\
\angle A E B=90^{\circ} \text { (angles in a triangle) }
\end{gathered}
$$

\therefore Hence, $A D$ and $B C$ are perpendicular
4. (a)

$$
\begin{aligned}
& \angle A D B=90^{\circ} \text { (angles in a semicircle) } \\
& \angle A E O=\angle C E D \text { (vertically opposite angles) (A) } \\
& \begin{aligned}
\angle E A O & =90^{\circ}-\angle A E P(\text { angles in a triangle }) \\
& =90^{\circ}-\angle C E D \\
& =\angle E C D(\mathrm{~A})
\end{aligned}
\end{aligned}
$$

By the AA similarity test, $\triangle A E O$ is similar to $\triangle C E D$

$$
\begin{aligned}
\frac{A E}{C E} & =\frac{E O}{E D}=\frac{A O}{C D} \\
\therefore \boldsymbol{A E} \times \boldsymbol{E} \boldsymbol{D} & =\boldsymbol{O} \boldsymbol{E} \times \boldsymbol{E C} \text { (shown) }
\end{aligned}
$$

(b) $O G$ is perpendicular to $A B$ (given) and $O G$ passes through the centre. Hence, it is equidistant from A and B. All points along $O G$ will be equidistant from A and B. Since C extends from $O G, C$ will be equidistant from A and B (shown)
(c)

$$
\angle C O B=90^{\circ} \text { (given) }
$$

Using angles in a semicircle, there is a circle, with $C B$ as its diameter that passes through the point O (shown)
5. (a)

$$
\begin{aligned}
& D T \text { is parallel to } A B \text { (midpoint theorem) } \\
& \begin{aligned}
\angle A F D & =\angle T D F \text { (alternate angles) } \\
& =\angle F E D \text { (alternate segment theorem) }
\end{aligned}
\end{aligned}
$$

Hence, $A B$ is a tangent at F (shown)

(b)

$$
\begin{aligned}
\angle T D F= & \angle D C F \text { (angles in an isosceles triangle) (A) } \\
& \angle D F E \text { is a common angle (A) } \\
\angle D C F= & \angle D E F(\text { angles in the same segment })(\mathrm{A})
\end{aligned}
$$

By the AAA similarity test, $\triangle D F T$ is similar to $\triangle E F D$

$$
\begin{aligned}
& \frac{D F}{E F}=\frac{F T}{F D} \\
& D F^{2}=F T \times E F \\
&=F T \times(E T+T F) \\
&=F T^{2}+F T \times E T \\
& \therefore \boldsymbol{D} \boldsymbol{F}^{\mathbf{2}}-\boldsymbol{F} \boldsymbol{T}^{\mathbf{2}}=\boldsymbol{F T} \times \boldsymbol{E T}(\text { shown })
\end{aligned}
$$

12 Differentiation

12.1 Full Solutions

1. (a) By Pythagoras' Theorem,

$$
\begin{aligned}
\left(\frac{h}{2}\right)^{2}+r^{2} & =35^{2} \\
\frac{h^{2}}{4} & =1225-r^{2} \\
h^{2} & =4\left(1225-r^{2}\right) \\
h & =2 \sqrt{1225-r^{2}} \text { (shown) }
\end{aligned}
$$

(b) Volume of the cylinder can be computed as

$$
\begin{aligned}
V & =\pi r^{2}\left(2 \sqrt{1225-r^{2}}\right) \\
& =2 \pi r^{2}\left(1225-r^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Hence, using the product rule,

$$
\begin{aligned}
\frac{d V}{d r} & =2 \pi r^{2}\left[\frac{1}{2}(-2 r)\left(1225-r^{2}\right)^{-\frac{1}{2}}\right]+\left(1225-r^{2}\right)^{\frac{1}{2}}(4 \pi r) \\
& =\frac{-2 \pi r^{3}}{\sqrt{1225-r^{2}}}+4 \pi r \sqrt{1225-r^{2}}
\end{aligned}
$$

Since the volume of the cylinder is maximum,

$$
\begin{aligned}
& \frac{-2 \pi r^{3}}{\sqrt{1225-r^{2}}}+4 \pi r \sqrt{1225-r^{2}}=0 \\
& r^{3}=2 r\left(1225-r^{2}\right) \\
& 3 r^{3}=2450 r \\
& r=\sqrt{816 \frac{2}{3}} \quad \text { (rej 0 and -ve) }
\end{aligned}
$$

$$
\text { Maximum volume }=\pi\left(\sqrt{816 \frac{2}{3}}\right)^{2}\left[2 \sqrt{1225-816 \frac{2}{3}}\right]
$$

$$
=103688.8637 \ldots
$$

$$
=104000 \mathrm{~cm}^{3} \text { (3.s.f.) }
$$

x	$\sqrt{816 \frac{2}{3}}(-)$	$\sqrt{816 \frac{2}{3}}$	$\sqrt{816 \frac{2}{3}}(+)$
$\frac{d y}{d x}$	+ve	0	-ve

Hence, V is maximum
2. (a)

$$
\begin{aligned}
\frac{d}{d x}(\sec x) & =\frac{d}{d x}\left(\frac{1}{\cos x}\right) \\
& =\frac{(\cos x)(0)-(1)(-\sin x)}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x} \\
& =\sec x \tan x \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d y}{d x} & =1-\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} \\
& =1-\frac{\sec x(\tan x+\sec x)}{\sec x+\tan x} \\
& =\mathbf{1}-\sec \boldsymbol{x}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{d y}{d x} & =1-\sec x \\
& =1-\frac{1}{\cos x} \\
& =\frac{\cos x-1}{\cos x}
\end{aligned}
$$

Note that the principal domain of $\cos x$ is $(-1,1)$. With the given range in the question,

$$
0<\cos x<1
$$

Note that the numerator of $\frac{d y}{d x}$ will always be negative, and the denominator of $\frac{d y}{d x}$ will always be positive. Hence

$$
\frac{d y}{d x}<0, \text { decreasing function }
$$

3. (a) (i) Using similar triangles,

$$
\begin{aligned}
\frac{28-h}{28} & =\frac{r}{10} \\
28-h & =\frac{28}{10} r \\
h & =28-\frac{14}{5} r \text { (shown) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\text { Volume of cylinder } & =\pi r^{2}\left(28-\frac{14}{5} r\right) \\
& =14 \pi r^{2}\left(2-\frac{1}{5} r\right) \text { (shown) }
\end{aligned}
$$

(b) (i)

$$
\begin{aligned}
\frac{d V}{d r} & =56 \pi r-\frac{14}{5} \pi\left(3 r^{2}\right) \\
& =14 \pi r\left(4-\frac{3}{5} r\right)
\end{aligned}
$$

Given that the volume of maximum,

$$
\begin{gathered}
14 \pi r\left(4-\frac{3}{5} r\right)=0 \\
r=0(\mathrm{rej}) \quad \text { or } \quad r=6 \frac{2}{3} \\
\frac{d^{2} V}{d r^{2}}=56 \pi-\frac{84}{5} \pi r \\
=56 \pi-\frac{84}{5} \pi\left(6 \frac{2}{3}\right) \\
=-175.93 \ldots<0 \\
\text { Since } \frac{d^{2} V}{d r^{2}}<0, V \text { is maximum } \\
\text { Max volume }=14 \pi\left(\frac{20}{3}\right)^{2}\left[4-\frac{3}{5}\left(\frac{20}{3}\right)\right] \\
=\mathbf{4 1 4} \frac{\mathbf{2 2}}{\mathbf{2 7}} \mathbf{c m}^{\mathbf{3}}
\end{gathered}
$$

(ii)

$$
\begin{aligned}
\text { Volume of cone } & =\frac{1}{3} \pi(10)^{2}(28) \\
& =\frac{2800}{3} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{\text { Volume of cylinder }}{\text { Volume of cone }} & =\frac{11200 \pi}{27} \times \frac{3}{2800 \pi} \\
& =\frac{4}{9}(\text { shown })
\end{aligned}
$$

4.

$$
\begin{gathered}
\frac{d y}{d x}=x^{2}\left(-2 e^{1-2 x}\right)+e^{1-2 x}(2 x) \\
=-2 x^{2} e^{1-2 x}+2 x e^{1-2 x} \\
=-2 y+\frac{2 y}{x} \\
\frac{d^{2} y}{d x^{2}}=-2\left(\frac{d y}{d x}\right)+2 x\left(-2 e^{1-2 x}\right)+2 e^{1-2 x} \\
=-2\left(\frac{d y}{d x}\right)-4 x e^{1-2 x}+2 e^{1-2 x} \\
=-2\left(\frac{d y}{d x}\right)-\frac{4 y}{x}+\frac{2 y}{x^{2}} \\
\therefore \frac{d^{2} y}{d x^{2}}-\frac{2 y}{x^{2}}=-2\left(\frac{d y}{d x}\right)-\frac{4 y}{x} \\
=-2\left(\frac{d y}{d x}\right)-2\left(\frac{d y}{d x}+2 y\right) \\
=-4\left(\frac{d y}{d x}\right)-4 y \\
=-4\left(\frac{d y}{d x}+y\right) \\
\therefore \boldsymbol{k}=-4
\end{gathered}
$$

5. (a) Let $A C=r$ and $B C=h$

$$
\begin{gathered}
r^{2}=16-h^{2} \\
V=\frac{1}{3} \pi r^{2} h \\
=\frac{1}{3} \pi\left(16-h^{2}\right) h \\
=\frac{16}{3} \pi h-\frac{1}{3} \pi h^{3} \\
\frac{d V}{d h}=\frac{16}{3} \pi-\pi h^{2}
\end{gathered}
$$

Since maximum, $\frac{d V}{d h}=0$

$$
\begin{aligned}
& \frac{16}{3} \pi=\pi h^{2} \\
& h=\frac{4}{\sqrt{3}} \quad(\text { rej -ve }) \\
& \begin{aligned}
\frac{d^{2} V}{d h^{2}} & =-2 \pi h \\
& =-\frac{8}{\sqrt{3}} \pi<0
\end{aligned}
\end{aligned}
$$

Hence, V is maximum

$$
h=\frac{4}{\sqrt{3}} \mathbf{c m}
$$

(b)

$$
\begin{aligned}
r^{2} & =16-\left(\frac{4}{\sqrt{3}}\right)^{2} \\
r & =\frac{4 \sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{h}{r} & =\frac{\left(\frac{4}{\sqrt{3}}\right)}{\left(\frac{4 \sqrt{2}}{\sqrt{3}}\right)} \\
& =\frac{1}{\sqrt{2}} \\
B C: C A & =1: \sqrt{2}(\text { shown })
\end{aligned}
$$

13 Integration

13.1 Full Solutions

1. (a)

$$
\begin{aligned}
\text { LHS } & =\frac{2}{\tan \theta+\cot \theta} \\
& =2 \div\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right) \\
& =2 \div\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \\
& =2 \div\left(\frac{1}{\cos \theta \sin \theta}\right) \\
& =2 \sin \theta \cos \theta \\
& =\sin 2 \theta \\
& =\text { RHS (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{p} \frac{4}{\tan 2 x+\cot 2 x} d x & =2 \int_{0}^{p} \sin 4 x d x \\
& =2\left[-\frac{\cos 4 x}{4}\right]_{0}^{p} \\
& =\left(-\frac{1}{2} \cos 4 p\right)-\left(-\frac{1}{2} \cos 0\right) \\
& =-\frac{1}{2} \cos 4 p+\frac{1}{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
-\frac{1}{2} \cos 4 p+\frac{1}{2} & =\frac{1}{4} \\
-\frac{1}{2} \cos 4 p & =-\frac{1}{4} \\
\cos 4 p & =\frac{1}{2} \\
4 p & =\frac{\pi}{3} \\
p & =\frac{\boldsymbol{\pi}}{\mathbf{1 2}}
\end{aligned}
$$

2. (a) At minimum gradient, $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{aligned}
a\left(\frac{1}{3}\right)-2 & =0 \\
\frac{a}{3} & =2 \\
a & =6 \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d y}{d x} & =\int(6 x-2) d x \\
& =3 x^{2}-2 x+c \quad \text { where } c \text { is an arbitrary constant }
\end{aligned}
$$

Since the tangent of the curve at the point $(1,4)$ is $y=2 x+2$, the gradient of the tangent is 2

$$
\begin{aligned}
& 3(1)^{2}-2(1)+c=2 \\
& c=1 \\
& y=\int\left(3 x^{2}-2 x+1\right) d x \\
&=x^{3}-x^{2}+x+d \quad \text { where } d \text { is an arbitrary constant }
\end{aligned}
$$

Substituting (1,4),

$$
\begin{aligned}
& 4=(1)^{3}-(1)^{2}+1+d \\
& d=3 \\
& \therefore \boldsymbol{y}=\boldsymbol{x}^{\mathbf{3}}-\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{x}+\mathbf{3}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{8}} f^{\prime}(x) d x & =\frac{\pi}{16}-\frac{1}{8} \\
\frac{\left(\frac{\pi}{8}\right)}{2}-\frac{\left[\sin k\left(\frac{\pi}{8}\right)\right]}{8} & =\frac{\pi}{16}-\frac{1}{8} \\
\sin \left(\frac{k \pi}{8}\right) & =1 \\
\frac{k \pi}{8} & =\frac{\pi}{2} \\
k & =4 \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int f^{\prime}(x) d x & =\frac{x}{2}-\frac{\sin 4 x}{8}+c \\
f^{\prime}(x) & =\frac{1}{2}-\frac{1}{8}(4 \cos 4 x) \\
& =\frac{1}{2}-\frac{1}{2} \cos 4 x \\
& =\frac{1}{2}-\frac{1}{2}\left(1-2 \sin ^{2} 2 x\right) \\
& =\sin ^{2} 2 \boldsymbol{x}
\end{aligned}
$$

(c)

$$
\int f^{\prime}(x)=f(x)=\frac{x}{2}-\frac{\sin 4 x}{8}+c
$$

At $\left(\frac{\pi}{4}, 0\right)$,

$$
\begin{aligned}
0 & =\frac{\pi}{8}-0+c \\
c & =-\frac{\pi}{8} \\
\therefore f(x) & =\frac{x}{2}-\frac{\sin 4 x}{8}-\frac{\pi}{8}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
f^{\prime}(x) & =x^{\frac{1}{2}}-x^{-\frac{1}{2}} \\
f(x) & =\int\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right) d x \\
& =\frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+c
\end{aligned}
$$

At $(4,0)$,

$$
\begin{aligned}
& \frac{2}{3}(4)^{\frac{3}{2}}-2(4)^{\frac{1}{2}}+c=0 \\
& c=-\frac{4}{3} \\
& \therefore f(x)=\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{x}^{\frac{3}{2}}-\mathbf{2} \boldsymbol{x}^{\frac{1}{2}}-\frac{\mathbf{4}}{\mathbf{3}}
\end{aligned}
$$

(b) At Q,

$$
\begin{aligned}
f^{\prime}(4) & =\left.\frac{d y}{d x}\right|_{x=4} \\
& =4^{\frac{1}{2}}-4^{-\frac{1}{2}}
\end{aligned}
$$

Hence, the equation of $P Q$,

$$
\begin{aligned}
y & =\frac{3}{2}(x-4) \\
y & =\frac{3}{2} x-6
\end{aligned}
$$

By observing the equation, at P,

$$
y=-6
$$

(c)

$$
\begin{aligned}
\text { Area of shaded region } & =\frac{1}{2}(4)(6)-\left|\int_{0}^{4}\left(\frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}-\frac{4}{3}\right) d x\right| \\
& =12+\left[\frac{4}{15} x^{\frac{5}{2}}-\frac{4}{3} x^{\frac{3}{2}}-\frac{4}{3} x\right]_{0}^{4} \\
& =12+\left[\frac{4}{15}(4)^{\frac{5}{2}}-\frac{4}{3} x^{\frac{3}{2}}-\frac{4}{3}(4)\right] \\
& =12-\frac{112}{15} \\
& =\mathbf{4} \frac{\mathbf{8}}{\mathbf{1 5}} \text { units }^{\mathbf{2}}
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
\sin (A+B)+\sin (A-B) & =\sin A \cos B+\sin B \cos A+\sin A \cos B-\sin B \cos A \\
& =2 \sin A \cos B
\end{aligned}
$$

$$
\therefore k=\mathbf{2}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \sin 2 x \cos x d x & =\frac{1}{2} \int_{0}^{\frac{\pi}{4}} 2 \sin 2 x \cos x d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{4}}[\sin (2 x+x)+\sin (2 x-x)] d x \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{4}}[\sin 3 x+\sin x] d x \\
& =\frac{1}{2}\left[-\frac{1}{3} \cos 3 x-\cos x\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{2}\left\{\left[-\left(\frac{1}{3}\right)\left(\frac{1}{\sqrt{2}}\right)-\frac{1}{\sqrt{2}}\right]-\left[-\frac{1}{3}(1)-(1)\right]\right\} \\
& =\frac{1}{2}\left[-\frac{1}{3 \sqrt{2}}-\frac{1}{\sqrt{2}}+\frac{4}{3}\right] \\
& =\frac{1}{2}\left(\frac{-1-3+4 \sqrt{2}}{3 \sqrt{2}}\right) \\
& =\frac{2 \sqrt{2}-2}{3 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{4-\sqrt{2}}{\mathbf{6}}
\end{aligned}
$$

14 Differentiation \& Integration

14.1 Full Solutions

1. (a)

$$
\begin{aligned}
\frac{d}{d x}[(x-5) \sqrt{2 x-1}] & =\sqrt{2 x-1}+(x-5)\left[\frac{1}{2}(2 x-1)^{-\frac{1}{2}}(2)\right] \\
& =\sqrt{2 x-1}+\frac{x-5}{\sqrt{2 x-1}} \\
& =\frac{2 x-1+x-5}{\sqrt{2 x-1}} \\
& =\frac{\mathbf{3 x - 6}}{\sqrt{2 \boldsymbol{x}-1}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{1}^{2} \frac{3 x-9}{\sqrt{2 x-1}} d x & =\int_{1}^{2}\left[\frac{3 x-6}{\sqrt{2 x-1}}-\frac{3}{\sqrt{2 x-1}}\right] d x \\
& =\int_{1}^{2} \frac{3 x-6}{\sqrt{2 x-1}} d x-\int_{1}^{2} \frac{3}{\sqrt{2 x-1}} d x \\
& =[(x-5) \sqrt{2 x-1}]_{1}^{2}-\left[\frac{3(2 x-1)^{\frac{1}{2}}}{2\left(\frac{1}{2}\right)}\right]_{1}^{2} \\
& =[-3 \sqrt{3}-(-4)]-[3 \sqrt{3}-3] \\
& =\mathbf{7}-\mathbf{6} \sqrt{3}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
\frac{d}{d x}(\sin x \cos x) & =\sin x(-\sin x)+\cos x(\cos x) \\
& =\cos ^{2} x-\sin ^{2} x \\
& =\cos ^{2} x-\left(1-\cos ^{2} x\right) \\
& =2 \cos ^{2} x-1 \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \cos ^{2} x d x & =\frac{1}{2} \int_{0}^{\frac{\pi}{4}}\left(2 \cos ^{2} x-1\right)+1 d x \\
& =\frac{1}{2}\left\{[\sin x \cos x]_{0}^{\frac{\pi}{4}}+[x]_{0}^{\frac{\pi}{4}}\right\} \\
& =\frac{1}{2}\left[\frac{1}{2}+\frac{\pi}{4}\right] \\
& =\frac{\mathbf{1}}{\mathbf{4}}+\frac{\pi}{\mathbf{8}}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{x}+\frac{1}{e^{x}}\right)^{2} \\
y & =\int\left(e^{x}+\frac{1}{e^{x}}\right)^{2} d x \\
& =\int\left(e^{2 x}+2+e^{-2 x}\right) d x \\
& =-\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c
\end{aligned}
$$

At $(0,3)$,

$$
\begin{gathered}
3=\frac{1}{2} e^{0}+2(0)-\frac{1}{2} e^{0}+c \\
c=3 \\
\therefore \boldsymbol{y}=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{e}^{\mathbf{2 x}}+\mathbf{2 x}-\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{e}^{-\mathbf{2 x}}+\mathbf{3}
\end{gathered}
$$

(b)

$$
\begin{aligned}
f^{\prime}(x) & =e^{2 x}+2+e^{-2 x} \\
f^{\prime \prime}(x) & =2 e^{2 x}-2 e^{-2 x}
\end{aligned}
$$

Since $f^{\prime \prime}(x)=3$,

$$
2 e^{2 x}-2 e^{-2 x}=3
$$

Let $e^{2 x}=a$,

$$
\begin{aligned}
& 2 a-\frac{2}{a}=3 \\
& 2 a^{2}-3 a-2=0 \\
&(2 a+1)(a-2)=0 \\
& a=2 \quad \text { or } \quad a=-\frac{1}{2} \\
& e^{2 x}=2 \quad \text { or } \quad e^{2 x}=-\frac{1}{2} \text { (N.A.) }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
2 x & =\ln 2 \\
x & =\ln \sqrt{2}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
y & =e^{x} \sin x \\
\frac{d y}{d x} & =e^{x} \sin x+e^{x} \cos x \\
\frac{d^{2} y}{d x^{2}} & =e^{x} \sin x+e^{x} \cos x-e^{x} \sin x+e^{x} \cos x \\
& =2 e^{x} \cos x \\
\therefore 2\left(\frac{d y}{d x}\right)-\frac{d^{2} y}{d x^{2}} & =2\left(e^{x} \sin x+e^{x} \cos x\right)-2 e^{x} \cos x \\
& =2 e^{x} \sin x \\
& =2 y \text { (shown) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
-\frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right) & =2 y \\
\therefore-\frac{d y}{d x}+2 y & =2 \int e^{x} \sin x d x \\
-e^{x} \sin x-e^{x} \cos x+2 e^{x} \sin x & =2 \int e^{x} \sin x d x \\
\therefore \int e^{x} \sin x d x & =\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+c
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{3}} e^{x} \sin x d x & =\left[\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)\right]_{0}^{\frac{\pi}{3}} \\
& =\mathbf{1 . 0 2} \text { (3.s.f.) }
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
y & =x^{2} \sqrt{2 x+1} \\
\frac{d y}{d x} & =x^{2}\left[\frac{1}{2}(2 x+1)^{-\frac{1}{2}}(2)\right]+2 x(2 x+1)^{\frac{1}{2}} \\
& =\frac{x^{2}}{\sqrt{2 x+1}}+2 x \sqrt{2 x+1} \\
& =\frac{x^{2}+2 x(2 x+1)}{\sqrt{2 x+1}} \\
& =\frac{x(5 x+2)}{\sqrt{2 x+1}}(\text { shown })
\end{aligned}
$$

(b) (i) At the stationary points,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x(5 x+2)}{\sqrt{2 x+1}}=0 \\
& x=0 \quad \text { or } \quad x=-\frac{2}{5}
\end{aligned}
$$

$$
\text { Stationary points are }(0,0) \text { and }\left(-\frac{2}{5}, 0.0716\right)
$$

Using the first derivative test,

x	$0(-)$	0	$0(+)$
$\frac{d y}{d x}$	-ve	0	+ ve

$\therefore(0,0)$ is a minimum point

x	$-0.4(-)$	-0.4	$0.4(+)$
$\frac{d y}{d x}$	+ ve	0	-ve

$$
\therefore\left(-\frac{2}{5}, 0.0716\right) \text { is a maximum point }
$$

(ii)

$$
\begin{aligned}
\int_{1}^{5} \frac{5 x^{2}+2 x-3}{\sqrt{2 x+1}} d x & =\int_{1}^{5} \frac{x(5 x+2)}{\sqrt{2 x+1}} d x-3 \int_{1}^{5} \frac{1}{\sqrt{2 x+1}} d x \\
& =\left[x^{2} \sqrt{2 x+1}\right]_{1}^{5}-3[\sqrt{2 x+1}]_{1}^{5} \\
& =\mathbf{7 6 . 4}(\mathbf{3 . s . f .})
\end{aligned}
$$

15 Kinematics

15.1 Full Solutions

1. (a) At instantaneous rest, $v=0$

$$
\begin{gathered}
2-\frac{18}{(t+2)^{2}}=0 \\
t=1 \quad \text { or } \quad t=-5 \text { (N.A.) }
\end{gathered}
$$

(b)

$$
\begin{aligned}
s & =\int \frac{d v}{d t} d t \\
& =2 t+\frac{18}{t+2}+c
\end{aligned}
$$

When $t=1, s=9$,

$$
\begin{aligned}
& 9=2(1)+\frac{18}{(1)+2}+c \\
& c=1 \\
& \quad s=2 t+\frac{18}{t+2}+1
\end{aligned}
$$

When $t=0, s=10 \mathrm{~m}$, when $t=1, s=9 \mathrm{~m}$ and when $t=4, s=12 \mathrm{~m}$

$$
\begin{aligned}
\therefore \text { Total distance travelled } & =10-9+12-9 \\
& =\mathbf{4} \mathbf{~ m}
\end{aligned}
$$

(c) When $t=7$,

$$
\begin{aligned}
v & =2-\frac{18}{(7+2)^{2}} \\
& =\frac{16}{9}
\end{aligned}
$$

Hence, when $t=7$,

$$
k=1 \frac{7}{9}
$$

(d)

$$
\begin{aligned}
V & =-h\left(t^{2}-7 t\right)+k \\
& =-h t^{2}+7 h t+k
\end{aligned}
$$

Hence,

$$
\begin{aligned}
a & =\frac{d V}{d t} \\
& =-2 h t+7 h
\end{aligned}
$$

Hence, when $t=8, a=0.9$,

$$
\begin{aligned}
-2 h(8)+7 h & =-0.9 \\
h & =\mathbf{0 . 1}
\end{aligned}
$$

2. (a)

$$
\begin{aligned}
a & =4-2 t \\
v & =\int 4-2 t d t \\
& =4 t-t^{2}+c
\end{aligned}
$$

When $t=0, v=5$,

$$
\begin{gathered}
\therefore c=5 \\
\therefore v=4 t-t^{2}+5
\end{gathered}
$$

At the instantaneous rest, $v=0$,

$$
\begin{aligned}
4 t-t^{2}+5 & =0 \\
t^{2}-4 t-5 & =0 \\
(t-5)(t+1) & =0 \\
t=\mathbf{5} \quad \text { or } \quad t=-1 & \text { (N.A.) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
s & =\int\left(4 t-t^{2}+5\right) d t \\
& =2 t^{2}-\frac{1}{3} t^{3}+5 t+d
\end{aligned}
$$

When $t=0, s=0$,

$$
\begin{gathered}
\therefore d=0 \\
\therefore s=2 t^{2}-\frac{1}{3} t^{3}+5 t
\end{gathered}
$$

When $t=0, s=0$, when $t=5, s=\frac{100}{3}$, when $t=6, s=30$

$$
\begin{aligned}
\text { Total distance } & =2\left(\frac{100}{3}\right)-30 \\
& =\mathbf{3 6} \frac{\mathbf{2}}{\mathbf{3}} \mathbf{m}
\end{aligned}
$$

3. (a) At initial velocity, $t=0$,

$$
\begin{aligned}
v & =12 e^{k(0)}+18 \\
& =\mathbf{3 0} \mathbf{m} / \mathbf{s}
\end{aligned}
$$

(b) When $t=2, v=40$

$$
\begin{aligned}
40 & =12 e^{2 k}+18 \\
e^{2 k} & =\frac{11}{6} \\
k & =\frac{1}{2} \ln \left(\frac{11}{6}\right) \\
& =\mathbf{0 . 3 0 3 1} \text { (3.s.f.) }
\end{aligned}
$$

(c) Graph

(d)

Area under the curve $<$ Area of trapezium

$$
\begin{aligned}
\text { Area of trapezium } & =\frac{1}{2}(30+60)(4) \\
& =180 \mathrm{~m}
\end{aligned}
$$

Hence, the distance travelled will be less than 180 m
(e) The maximum acceleration occurs at $t=4$ where the gradient is the most steep

$$
\begin{aligned}
a & =\frac{d v}{d t} \\
& =k e^{k t} \\
\text { Max acceleration } & =\frac{1}{2} \ln \left(\frac{11}{6}\right) e^{\frac{1}{2} \ln \left(\frac{11}{6}\right)(4)} \\
& =\mathbf{1 2 . 2} \mathbf{m} / \mathrm{s}^{2}
\end{aligned}
$$

4. (a)

$$
\begin{aligned}
& a=\frac{t}{2} \\
v & =\int a d t \\
= & \int \frac{t}{2} d t \\
= & \frac{1}{4} t^{2}+c
\end{aligned}
$$

When $t=0, v=-1$

$$
\begin{aligned}
-1 & =\frac{1}{4}(0)^{2}+c \\
c & =-1 \\
v & =\frac{1}{4} t^{2}-1
\end{aligned}
$$

When $t=2$,

$$
\begin{aligned}
v & =\frac{1}{4}(2)^{2}-1 \\
& =\mathbf{0} \mathbf{m} / \mathbf{s}
\end{aligned}
$$

(b)

$$
\begin{aligned}
s & =\int v d t \\
& =\int\left(\frac{1}{4} t^{2}-1\right) d t \\
& =\frac{1}{12} t^{3}-t+d
\end{aligned}
$$

When $t=0, s=-4$

$$
\begin{aligned}
-4 & =\frac{1}{2}(0)^{3}-(0)+d \\
d & =-4 \\
\therefore s & =\frac{1}{12} t^{3}-t-4
\end{aligned}
$$

When $t=2$,

$$
\begin{aligned}
s & =\frac{1}{12}(2)^{3}-(2)-4 \\
& =-5 \frac{1}{3}
\end{aligned}
$$

When $t=5$,

$$
\begin{aligned}
s & =\frac{1}{12}(5)^{3}-5-4 \\
& =1 \frac{5}{12}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\text { Total distance travelled } & =\left(5 \frac{1}{3}-4\right)+\left(1 \frac{5}{12}+5 \frac{1}{3}\right) \\
& =\mathbf{8} \frac{\mathbf{1}}{\mathbf{1 2}} \mathbf{m}
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
v & =40 e^{-\frac{1}{3} t}-15 \\
a & =\frac{d v}{d t} \\
& =-\frac{40}{3} e^{-\frac{1}{3} t}
\end{aligned}
$$

When $t=0$,

$$
\begin{aligned}
a & =-\frac{40}{3} e^{-\frac{1}{3}(0)} \\
& =-\mathbf{1 3} \frac{\mathbf{1}}{\mathbf{3}} \mathbf{m} / \mathrm{s}^{\mathbf{2}}
\end{aligned}
$$

(b) When the car stops, $v=0$,

$$
\begin{aligned}
40 e^{-\frac{1}{3} t}-15 & =0 \\
e^{-\frac{1}{3} t} & =\frac{3}{8} \\
t & =-3 \ln \frac{3}{8} \\
& =\mathbf{2 . 9 4} \mathbf{s} \text { (3.s.f.) }
\end{aligned}
$$

(c)

$$
\begin{aligned}
s & =\int v d t \\
& =\int\left(40 e^{-\frac{1}{3} t}-15\right) d t \\
& =-120 e^{-\frac{1}{3} t}-15 t+c
\end{aligned}
$$

When $t=0, s=0$

$$
\begin{gathered}
c=120 \\
\therefore s=-\mathbf{1 2 0} e^{-\frac{1}{3} t}-\mathbf{1 5 t}+\mathbf{1 2 0}
\end{gathered}
$$

(d) To find the braking distance, substitute $t=-3 \ln \frac{3}{8}$

$$
\begin{aligned}
\text { Braking distance } & =-120\left(\frac{3}{8}\right)-15\left(-3 \ln \frac{3}{8}\right)+120 \\
& =\mathbf{3 0 . 9} \mathbf{m}(\mathbf{3 . s . f .})
\end{aligned}
$$

