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Nonetheless, don’t give up if you are unable to solve the questions! Send in your 
solutions as how you would submit your answer scripts during the National 
Examinations. From there, I will be able to see and judge the ability of the cohort 
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Topic: Quadratic Functions, Equations & Inequalities 
The roots of the quadratic equation 𝒙𝟐 − 𝟐(𝒎− 𝟏)𝒙 + )𝒎𝟐 − 𝟕+ = 𝟎 are 𝜶 and 𝜷. Given that 𝜶𝟐 +𝜷𝟐 = 𝟏𝟎, find 

the value of 𝒎 and obtain an equation whose roots are 𝜶
𝜷
 and 𝜷

𝜶
   

 
Solution 

 

𝒙𝟐 − 𝟐(𝒎− 𝟏)𝒙 + )𝒎𝟐 − 𝟕+ = 𝟎 

 

Sum of roots:                                                            Product of roots: 

𝜶+ 𝜷 = −
𝒃
𝒂 = −

)−𝟐(𝒎− 𝟏)+
𝟏 = 𝟐𝒎− 𝟐																									𝜶𝜷 =

𝒄
𝒂 =

)𝒎𝟐 − 𝟕+
𝟏 = 𝒎𝟐 − 𝟕 

 

𝜶𝟐 +𝜷𝟐 = 𝟏𝟎 

(𝜶 + 𝜷)𝟐 − 𝟐𝜶𝜷 = 𝟏𝟎 

(𝟐𝒎− 𝟐)𝟐 − 𝟐)𝒎𝟐 − 𝟕+ = 𝟏𝟎 

𝟒𝒎𝟐 − 𝟖𝒎+ 𝟒− 𝟐𝒎𝟐 + 𝟏𝟒 = 𝟏𝟎 

𝟐𝒎𝟐 − 𝟖𝒎+ 𝟖 = 𝟎 

𝒎𝟐 − 𝟒𝒎+ 𝟒 = 𝟎 

(𝒎− 𝟐)𝟐 = 𝟎 

𝒎 = 𝟐 

 

∴ Sum of roots: 𝜶+ 𝜷 = 𝟐(𝟐) − 𝟐 = 𝟐 

∴ Product of roots: 𝜶𝜷 = (𝟐)𝟐 − 𝟕 = −𝟑 

 

Since the new roots are 𝜶
𝜷
 and 𝜷

𝜶
 , 

Sum of new roots:                                                    Product of new roots: 

𝜶
𝜷+

𝜷
𝜶 =

𝜶𝟐 +𝜷𝟐

𝜶𝜷 = −
𝟏𝟎
𝟑 																																																									8	

𝜶
𝜷	98	

𝜷
𝜶	9 =

𝜶𝜷
𝜶𝜷 = 𝟏	 

 

∴ New Equation:  	

𝒙𝟐 − 8−
𝟏𝟎
𝟑 	9 𝒙 + 𝟏 = 𝟎 

𝟑𝒙𝟐 + 𝟏𝟎𝒙 + 𝟑 = 𝟎 
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Given that 𝒂 and 𝒃 are roots of the equation 𝒙𝟐 + 𝒙 − 𝟏 = 𝟎 and 𝒂 < 𝒃, prove that  

 
𝟏
√𝟑

𝒂𝟐𝒃 =
√𝟓 + 𝟏
𝟐√𝟑

 

 
Solution 

 

𝒙𝟐 + 𝒙 − 𝟏 = 𝟎 

 

Given that the roots are 𝒂 and 𝒃,  

𝒙 =
−𝟏 ±>(𝟏)𝟐 − 𝟒(𝟏)(−𝟏)

𝟐(𝟏)  

				=
−𝟏 ± √𝟓

𝟐  

 

Since 𝒂 < 𝒃,  

∴ 𝒂 =
−𝟏 − √𝟓

𝟐 	,										𝒃 =
−𝟏 + √𝟓

𝟐  

 

∴ 𝒂𝟐𝒃 = @
−𝟏 − √𝟓

𝟐 A
𝟐

∙ @
−𝟏 + √𝟓

𝟐 A 

= @
)−𝟏 − √𝟓+)−𝟏 − √𝟓+

𝟒 A ∙ @
−𝟏 + √𝟓

𝟐 A 

=
)−𝟏 −√𝟓+)−𝟏 − √𝟓+)−𝟏 + √𝟓+

𝟖  

=
)−𝟏 −√𝟓+ C(−𝟏)𝟐 − )√𝟓+

𝟐
D

𝟖  

=
)−𝟏 −√𝟓+(−𝟒)

𝟖  

=
𝟒)𝟏 + √𝟓+

𝟖  

=
𝟏+√𝟓
𝟐  

=
𝟏+√𝟓
𝟐 ×

√𝟑
√𝟑

 

=
)√𝟓 + 𝟏+)√𝟑+

𝟐√𝟑
 

 

Hence:	

∴
𝟏
√𝟑

𝒂𝟐𝒃 =
√𝟓 + 𝟏
𝟐√𝟑

	(𝐬𝐡𝐨𝐰𝐧) 
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Show that 𝒎𝒚 = 𝒙𝟐 − 𝟒(𝒙 − 𝟏) meets the curve 𝒚 = 𝒙𝟐 − 𝟑𝒙 + 𝟐 at 2 distinct points for all non-zero values of 𝒎 
 
Solution 

 

𝒎𝒚 = 𝒙𝟐 − 𝟒(𝒙 − 𝟏)……………(𝟏) 

𝒚 = 𝒙𝟐 − 𝟑𝒙 + 𝟐……………(𝟐) 

 

From Equation (𝟏),  

𝒚 =
𝒙𝟐 − 𝟒(𝒙 − 𝟏)

𝒎 ……………(𝟑) 

 

To show that there are 2 distinct intersection points, we assume that the 2 curves meet and show 

that it holds for all non-zero values of 𝒎. 

(𝟑) = (𝟐) 

 

𝒙𝟐 − 𝟒(𝒙 − 𝟏)
𝒎 = 𝒙𝟐 − 𝟑𝒙 + 𝟐 

𝒙𝟐 − 𝟒(𝒙 − 𝟏) = 𝒎)𝒙𝟐 − 𝟑𝒙 + 𝟐+ 

𝒙𝟐 − 𝟒(𝒙 − 𝟏) = 𝒎𝒙𝟐 − 𝟑𝒎𝒙+ 𝟐𝒎 

𝒙𝟐 −𝒎𝒙𝟐 − 𝟒𝒙 + 𝟑𝒎𝒙+ 𝟒 − 𝟐𝒎 = 𝟎 

(𝟏 −𝒎)𝒙𝟐 + (𝟑𝒎− 𝟒)𝒙 + (𝟒 − 𝟐𝒎) = 𝟎 

 

Since we assume that the 2 curves meet at 2 distinct points, 𝒃𝟐 − 𝟒𝒂𝒄 > 𝟎 

∴ (𝟑𝒎− 𝟒)𝟐 − 𝟒(𝟏 −𝒎)(𝟒 − 𝟐𝒎) > 𝟎 

𝟗𝒎𝟐 − 𝟐𝟒𝒎+ 𝟏𝟔 − 𝟒[𝟒 − 𝟔𝒎+ 𝟐𝒎𝟐] > 𝟎 

𝟗𝒎𝟐 − 𝟐𝟒𝒎+ 𝟏𝟔 − 𝟏𝟔 − 𝟐𝟒𝒎− 𝟖𝒎𝟐 > 𝟎 

𝒎𝟐 > 𝟎 

𝒎 < 𝟎						𝐨𝐫						𝒎 > 𝟎 

 

With the given equality, 𝒎 can take on both positive and negative values. 𝒎 can hold for all non-

zero values of 𝒎. Hence, the 2 curve meets at 2 distinct points. (shown) 
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Solve the simultaneous equations 
 

𝟗𝒚 × 𝟐𝟕 = 𝟑𝟐𝒙&𝟏 
𝟕𝒚√𝟕𝒙 = 𝟑𝟒𝟑 

 
Solution 

 

𝟗𝒚 × 𝟐𝟕 = 𝟑𝟐𝒙&𝟏……………(𝟏) 

𝟕𝒚√𝟕𝒙 = 𝟑𝟒𝟑……………(𝟐) 

 

From Equation (𝟏)                                   From Equation (𝟐) 

𝟗𝒚 × 𝟐𝟕 = 𝟑𝟐𝒙&𝟏																																																						𝟕𝒚√𝟕𝒙 = 𝟑𝟒𝟑 

𝟑𝟐𝒚 × 𝟑𝟑 = 𝟑𝟐𝒙&𝟏																																																					(𝟕𝒚) S𝟕
𝒙
𝟐T = 𝟕𝟑 

𝟑𝟐𝒚)𝟑 = 𝟑𝟐𝒙&𝟏																																																											𝟕𝒚)
𝒙
𝟐 = 𝟕𝟑 

∴ 𝟐𝒚 + 𝟑 = 𝟐𝒙 − 𝟏																																																 ∴ 𝒚 +
𝒙
𝟐 = 𝟑	 

𝒚 = 𝒙 − 𝟐……………(𝟑)																																							𝒚 = 𝟑 −
𝒙
𝟐……………

(𝟒) 

 

(𝟑) = (𝟒) 

𝒙 − 𝟐 = 𝟑 −
𝒙
𝟐 

𝟐𝒙 − 𝟒 = 𝟔 − 𝒙 

𝟑𝒙 = 𝟏𝟎 

𝒙 =
𝟏𝟎
𝟑  

				= 𝟑
𝟏
𝟑 

 

Hence, we substitute 𝒙 = 𝟑 𝟏
𝟑
 into Equation (𝟑) 

𝒚 =
𝟏𝟎
𝟑 − 𝟐 

				=
𝟒
𝟑 

				= 𝟏
𝟏
𝟑 
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Topic: Indices & Surds 
Without using a calculator, find the value of 𝒂 and 𝒃 for which  

 
𝟔
√𝟐

@	
𝟓√𝟑𝟐
𝟐 +

𝟏𝟓
√𝟓𝟎

−
𝟏𝟒
𝟕√𝟔

	A = 𝒂 − 𝒃√𝟑 

 

Solution 

 

𝐋𝐇𝐒 =
𝟔
√𝟐

@	
𝟓√𝟑𝟐
𝟐 +

𝟏𝟓
√𝟓𝟎

−
𝟏𝟒
𝟕√𝟔

	A 

= 8	
𝟔
√𝟐
	9 @	

𝟓√𝟑𝟐
𝟐 	A + 8	

𝟔
√𝟐
	9 8	

𝟏𝟓
√𝟓𝟎

	9 − 8	
𝟔
√𝟐
	9 8	

𝟏𝟒
𝟕√𝟔

	9 

=
𝟑𝟎)√𝟐𝟒+)√𝟐+

𝟐√𝟐
+

𝟗𝟎
)√𝟐+)√𝟐+)√𝟓𝟐+

−
𝟖𝟒

𝟕)√𝟐+)√𝟐+)√𝟑+
 

=
𝟑𝟎)𝟐𝟐+
𝟐 +

𝟗𝟎
𝟐(𝟓) −

𝟖𝟒
𝟕(𝟐))√𝟑+

 

= 𝟏𝟓(𝟒) + 𝟗 −
𝟔
√𝟑

 

= 𝟔𝟗 −
𝟔
√𝟑

×
√𝟑
√𝟑

 

= 𝟔𝟗 −
𝟔√𝟑
𝟑  

= 𝟔𝟗 − 𝟐√𝟑 

 

∴ 𝒂 = 𝟔𝟗, 𝒃 = 𝟐 
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Topic: Polynomials 
Given that 𝟒𝒙𝟒 − 𝒑𝒙𝟑 − 𝟗𝒙𝟐 + 𝒙 + 𝟐 = (𝒙 − 𝟐)(𝒙 + 𝟏))𝒂𝒙𝟐 − 𝒃+, find 𝒂, 𝒃 and 𝒑 
 

Solution 

 

𝟒𝒙𝟒 − 𝒑𝒙𝟑 − 𝟗𝒙𝟐 + 𝒙 + 𝟐 = (𝒙 − 𝟐)(𝒙 + 𝟏))𝒂𝒙𝟐 − 𝒃+ 

 

𝐑𝐇𝐒 = (𝒙 − 𝟐)(𝒙 + 𝟏))𝒂𝒙𝟐 − 𝒃+ 

= )𝒙𝟐 − 𝒙 − 𝟐+)𝒂𝒙𝟐 − 𝒃+ 

= 𝒂𝒙𝟒 − 𝒃𝒙𝟐 − 𝒂𝒙𝟑 + 𝒃𝒙 − 𝟐𝒂𝒙𝟐 + 𝟐𝒃 

= 𝒂𝒙𝟒 − 𝒂𝒙𝟑 − (𝟐𝒂 + 𝒃)𝒙𝟐 + 𝒃𝒙 + 𝟐𝒃 

 

Comparing coefficients,  

𝒂 = 𝟒 

𝟐𝒃 = 𝟐⟹ 𝒃 = 𝟏 

−𝒂 = −𝒑⟹ 𝒑 = 𝟒 
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Topic: Partial Fractions 
Express the following in partial fractions:  

 
𝟏𝟐𝟑𝒙 − 𝟒𝟔

(𝟐 − 𝒙)(𝟑𝒙 − 𝟏)𝟐 

 
Solution 

 

𝟏𝟐𝟑𝒙 − 𝟒𝟔
(𝟐 − 𝒙)(𝟑𝒙 − 𝟏)𝟐 =

𝑨
𝟐 − 𝒙 +

𝑩
𝟑𝒙 − 𝟏 +

𝑪
(𝟑𝒙 − 𝟏)𝟐 

𝟏𝟐𝟑𝒙 − 𝟒𝟔 = 𝑨(𝟑𝒙 − 𝟏)𝟐 +𝑩(𝟐 − 𝒙)(𝟑𝒙 − 𝟏) + 𝑪(𝟐 − 𝒙) 

= 𝑨)𝟗𝒙𝟐 − 𝟔𝒙 + 𝟏+ + 𝑩)𝟔𝒙 − 𝟐 − 𝟑𝒙𝟐 + 𝒙+ + 𝟐𝑪 − 𝑪𝒙 

= 𝟗𝑨𝒙𝟐 − 𝟔𝑨𝒙 + 𝑨+ 𝟕𝑩𝒙 − 𝟐𝑩− 𝟑𝑩𝒙𝟐 + 𝟐𝑪 − 𝑪𝒙 

= (𝟗𝑨 − 𝟑𝑩)𝒙𝟐 + (𝟕𝑩− 𝟔𝑨− 𝑪)𝒙 + (𝑨 − 𝟐𝑩+ 𝟐𝑪) 

 

Comparing coefficients,  

𝟗𝑨 − 𝟑𝑩 = 𝟎……………(𝟏) 

𝟕𝑩− 𝟔𝑨− 𝑪 = 𝟏𝟐𝟑……………(𝟐) 

𝑨− 𝟐𝑩+ 𝟐𝑪 = −𝟒𝟔……………(𝟑) 

 

From Equation (𝟏),  

𝟑𝑩 = 𝟗𝑨⟹ 𝑩 = 𝟑𝑨……………(𝟒) 

 

Substitute Equation (𝟒) into Equation (𝟐) and Equation (𝟑), 

𝟕(𝟑𝑨) − 𝟔𝑨 − 𝑪 = 𝟏𝟐𝟑 

𝑪 = 𝟏𝟓𝑨 − 𝟏𝟐𝟑……………(𝟓) 

 

𝑨− 𝟐(𝟑𝑨) + 𝟐𝑪 = −𝟒𝟔 

𝟐𝑪 − 𝟓𝑨 = −𝟒𝟔………………(𝟔) 

 

Substitute Equation (𝟓) into Equation (𝟔),  

𝟐(𝟏𝟓𝑨 − 𝟏𝟐𝟑) − 𝟓𝑨 = −𝟒𝟔 

𝟑𝟎𝑨 − 𝟐𝟒𝟔 − 𝟓𝑨 = −𝟒𝟔 

𝟐𝟓𝑨 = 𝟐𝟎𝟎⟹ 𝑨 = 𝟖 

 

Substitute 𝑨 = 𝟖 into Equation (𝟒) and Equation (𝟓) 

𝑩 = 𝟑(𝟖) ⟹ 𝑩 = 𝟐𝟒 

𝑪 = 𝟏𝟓(𝟖) − 𝟏𝟐𝟑⟹ 𝑪 = −𝟑 

 

∴
𝟏𝟐𝟑𝒙 − 𝟒𝟔

(𝟐 − 𝒙)(𝟑𝒙 − 𝟏)𝟐 =
𝟖

𝟐 − 𝒙 +
𝟐𝟒

𝟑𝒙 − 𝟏 −
𝟑

(𝟑𝒙 − 𝟏)𝟐 
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Topic: Binomial Theorem 
In the given expansion, where 𝒏 > 𝟎, the first 3 terms in ascending powers of 𝒙 are 

 

8
𝒌
𝒙𝟑 + 𝒄𝒙9

𝒏

=
𝟏
𝒙𝟔𝟔 +

𝟒𝟒
𝒙𝟔𝟐 +

𝟗𝟐𝟒
𝒙𝟓𝟖 +⋯ 

 
(a) Find the values of 𝒌, 𝒏 and 𝒄 
(b) In the given expansion, where 𝒑 is a positive constant, the term independent of 𝒙 is 𝟓𝟑𝟕𝟔. Find the value 

of 𝒑           
 

S𝒙𝟐 −
𝒑
𝟐𝒙T

𝟗
 

 
[S4 CCHY P2/2012 PRELIM Qn 2] 
 

Solution 
 

(a)    To find the values, we expand the left hand side of the equation first 

	8
𝒌
𝒙𝟑 + 𝒄𝒙9

𝒏

= 8
𝒌
𝒙𝟑9

𝒏

+ S	𝒏𝟏	T 8
𝒌
𝒙𝟑9

𝒏&𝟏
(𝒄𝒙)𝟏 + S	𝒏𝟐	T 8

𝒌
𝒙𝟑9

𝒏&𝟐
(𝒄𝒙)𝟐 +⋯ 

			=
𝒌𝒏

𝒙𝟑𝒏 + 𝒏@
𝒌𝒏&𝟏

𝒙𝟑𝒏&𝟑A
(𝒄𝒙) +

𝒏(𝒏 − 𝟏)
𝟐 @

𝒌𝒏&𝟐

𝒙𝟑𝒏&𝟔A )𝒄
𝟐𝒙𝟐+ +⋯ 

			=
𝒌𝒏

𝒙𝟑𝒏 +
𝒏𝒄𝒌𝒏&𝟏

𝒙𝟑𝒏&𝟒 +
𝒏(𝒏 − 𝟏)𝒄𝟐𝒌𝒏&𝟐

𝟐𝒙𝟑𝒏&𝟔 +⋯ 

  
 Comparing coefficients, 

	𝒙𝟑𝒏 = 𝒙𝟔𝟔 

	𝟑𝒏 = 𝟔𝟔 

	𝒏 = 𝟐𝟐 

 

	𝒌𝟐𝟐 = 𝟏 

	𝒌 = 𝟏 

 

	𝒏𝒄𝒌𝒏&𝟏 = 𝟒𝟒 

	(𝟐𝟐)(𝒄)(𝟏) = 𝟒𝟒 

	𝒄 = 𝟐 
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(b)    To find the value of 𝒑, we need to find the general (𝒓 + 𝟏)𝐭𝐡 term 

		𝐆𝐞𝐧𝐞𝐫𝐚𝐥	(𝒓 + 𝟏)𝐭𝐡	𝐭𝐞𝐫𝐦 = S	𝟗𝒓	T )𝒙
𝟐+
𝟗&𝒓 S−

𝒑
𝟐𝒙T

𝒓
 

	= S	𝟗𝒓	T )𝒙
𝟏𝟖&𝟐𝒓+ S−

𝒑
𝟐T

𝒓
(𝒙&𝒓) 

	= S	𝟗𝒓	T )𝒙
𝟏𝟖&𝟑𝒓+ S−

𝒑
𝟐T

𝒓
 

 

For the independent term of 𝒙, 𝒙𝟎 

			𝒙𝟎 = 𝒙𝟏𝟖&𝟑𝒓 

		𝟏𝟖 − 𝟑𝒓 = 𝟎 

			𝒓 = 𝟔 

 

Given that the independent term of 𝒙 is 𝟓𝟑𝟕𝟔 

			∴ S	𝟗𝟔	T S−
𝒑
𝟐T

𝟔
= 𝟓𝟑𝟕𝟔 

			𝟖𝟒 @
𝒑𝟔

𝟔𝟒A = 𝟓𝟑𝟕𝟔 

			𝒑𝟔 = 𝟒𝟎𝟗𝟔 

			𝒑 = 𝟒 
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Topic: Power, Exponential, Logarithm & Modulus Functions 
Solve the following equation 

 
𝐥𝐨𝐠𝟗 𝟑𝒙 − 𝐥𝐨𝐠𝟑 𝟑𝒙 = 𝐥𝐨𝐠√𝟑 𝟑 

 

Solution 

 

𝐥𝐨𝐠𝟗 𝟑𝒙 − 𝐥𝐨𝐠𝟑 𝟑𝒙 = 𝐥𝐨𝐠√𝟑 𝟑 

𝐥𝐨𝐠𝟑 𝟑𝒙
𝐥𝐨𝐠𝟑 𝟗

− 𝐥𝐨𝐠𝟑 𝟑𝒙 =
𝐥𝐨𝐠𝟑 𝟑
𝐥𝐨𝐠𝟑 √𝟑

 

𝐥𝐨𝐠𝟑 𝟑𝒙
𝐥𝐨𝐠𝟑(𝟑)𝟐

− 𝐥𝐨𝐠𝟑 𝟑𝒙 =
𝐥𝐨𝐠𝟑 𝟑

𝐥𝐨𝐠𝟑(𝟑)
𝟏
𝟐
 

𝐥𝐨𝐠𝟑 𝟑𝒙
𝟐𝐥𝐨𝐠𝟑 𝟑

− 𝐥𝐨𝐠𝟑 𝟑𝒙 =
𝐥𝐨𝐠𝟑 𝟑
𝟏
𝟐 𝐥𝐨𝐠𝟑 𝟑

 

𝐥𝐨𝐠𝟑 𝟑𝒙
𝟐 − 𝐥𝐨𝐠𝟑 𝟑𝒙 =

𝟏

S𝟏𝟐T
 

𝟏
𝟐 𝐥𝐨𝐠𝟑 𝟑𝒙 − 𝐥𝐨𝐠𝟑 𝟑𝒙 = 𝟐 

−
𝟏
𝟐 𝐥𝐨𝐠𝟑 𝟑𝒙 = 𝟐 

𝐥𝐨𝐠𝟑 𝟑𝒙 = −𝟒 

∴ 𝟑𝒙 = (𝟑)&𝟒 

𝟑𝒙 =
𝟏
𝟖𝟏 

𝒙 =
𝟏
𝟐𝟒𝟑 
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Solve the equation 
 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 −
𝟐

𝐥𝐨𝐠√𝟐 𝟐
= 𝐥𝐨𝐠𝟒 8𝒙𝟐 +

𝟗
𝟒9 

 

Solution 

 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 −
𝟐

𝐥𝐨𝐠√𝟐 𝟐
= 𝐥𝐨𝐠𝟒 8𝒙𝟐 +

𝟗
𝟒9 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 −
𝟐

@ 𝟏
𝐥𝐨𝐠𝟐 √𝟐

A
= 𝐥𝐨𝐠𝟒 8𝒙𝟐 +

𝟗
𝟒9 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 − 𝟐 𝐥𝐨𝐠𝟐 √𝟐 = 𝐥𝐨𝐠𝟒 8𝒙𝟐 +
𝟗
𝟒9 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 − 𝟐 𝐥𝐨𝐠𝟐 𝟐
𝟏
𝟐 = 𝐥𝐨𝐠𝟒 8𝒙𝟐 +

𝟗
𝟒9 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 − 𝟏 = 𝐥𝐨𝐠𝟒 8𝒙𝟐 +
𝟗
𝟒9 

𝐥𝐨𝐠𝟒(𝟑𝒙 − 𝟏)𝟐 − 𝐥𝐨𝐠𝟒 𝟒 = 𝐥𝐨𝐠𝟒 8𝒙𝟐 +
𝟗
𝟒9 

𝐥𝐨𝐠𝟒 @
(𝟑𝒙 − 𝟏)𝟐

𝟒 A = 𝐥𝐨𝐠𝟒 8𝒙𝟐 +
𝟗
𝟒9 

∴
(𝟑𝒙 − 𝟏)𝟐

𝟒 = 𝒙𝟐 +
𝟗
𝟒 

𝟗𝒙𝟐 − 𝟔𝒙 + 𝟏 = 𝟒𝒙𝟐 + 𝟗 

𝟓𝒙𝟐 − 𝟔𝒙 − 𝟖 = 𝟎 

(𝒙 − 𝟐)(𝟓𝒙 + 𝟒) = 𝟎 

𝒙 = 𝟐								𝐨𝐫								𝒙 = −
𝟒
𝟓 
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Topic: Trigonometry 
Prove that 

 

𝐬𝐢𝐧𝑨 + 𝐬𝐢𝐧𝟐𝑨 + 𝐬𝐢𝐧𝟑𝑨
𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬𝟑𝑨 = 𝐭𝐚𝐧𝟐𝑨 

 

Solution 

 

𝐬𝐢𝐧𝑨 + 𝐬𝐢𝐧𝟐𝑨 + 𝐬𝐢𝐧𝟑𝑨
𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬𝟑𝑨 = 𝐭𝐚𝐧𝟐𝑨 

 

𝐋𝐇𝐒 =
𝐬𝐢𝐧𝑨 + 𝐬𝐢𝐧𝟐𝑨 + 𝐬𝐢𝐧𝟑𝑨
𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬𝟑𝑨 

=
𝐬𝐢𝐧(𝟐𝑨 − 𝑨) + 𝐬𝐢𝐧𝟐𝑨 + 𝐬𝐢𝐧(𝟐𝑨 + 𝑨)
𝐜𝐨𝐬(𝟐𝑨 − 𝑨) + 𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬(𝟐𝑨 + 𝑨) 

=
𝐬𝐢𝐧𝟐𝑨𝐜𝐨𝐬𝑨 − 𝐜𝐨𝐬𝟐𝑨𝐬𝐢𝐧𝑨 + 𝐬𝐢𝐧𝟐𝑨 + 𝐬𝐢𝐧𝟐𝑨𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝟐𝑨𝐬𝐢𝐧𝑨
𝐜𝐨𝐬𝟐𝑨𝐜𝐨𝐬𝑨 + 𝐬𝐢𝐧𝟐𝑨𝐬𝐢𝐧𝑨 + 𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬𝟐𝑨𝐜𝐨𝐬𝑨 − 𝐬𝐢𝐧𝟐𝑨𝐬𝐢𝐧𝑨 

=
𝟐𝐬𝐢𝐧𝟐𝑨𝐜𝐨𝐬𝑨 + 𝐬𝐢𝐧𝟐𝑨
𝟐𝐜𝐨𝐬𝟐𝑨𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝟐𝑨 

=
𝐬𝐢𝐧𝟐𝑨 (𝟐 𝐜𝐨𝐬𝑨 + 𝟏)
𝐜𝐨𝐬𝟐𝑨 (𝟐 𝐜𝐨𝐬𝑨 + 𝟏) 

=
𝐬𝐢𝐧𝟐𝑨
𝐜𝐨𝐬𝟐𝑨 

= 𝐭𝐚𝐧𝟐𝑨 

= 𝐑𝐇𝐒	(𝐬𝐡𝐨𝐰𝐧) 
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The diagram on the right shows a rectangle 𝑨𝑩𝑪𝑫 inside a semicircle, centre 𝑶 and radius 𝟓𝒄𝒎, such that 
∠𝑩𝑶𝑨 = ∠𝑪𝑶𝑫 = 𝜽° 
(a) Show that the perimeter, 𝑷	𝒄𝒎, of the rectangle is given by the formula 𝑷 = 𝟐𝟎𝐜𝐨𝐬𝜽 + 𝟏𝟎𝐬𝐢𝐧𝜽 
(b) Express 𝑷 in the form 𝑹𝐜𝐨𝐬(𝜽 − 𝜶) and hence find the value of 𝜽 for which 𝑷 = 𝟏𝟔 
(c) Find the value of 𝒌 for which the area of the rectangle is 𝒌𝐬𝐢𝐧𝟐𝜽	𝒄𝒎𝟐 
 
 
Solution 

 

(a) In Triangle 𝑨𝑶𝑩, 

𝐬𝐢𝐧𝜽 =
𝑨𝑩
𝟓 ⟹ 𝑨𝑩 = 𝟓𝐬𝐢𝐧𝜽 

𝐜𝐨𝐬𝜽 =
𝑨𝑶
𝟓 ⟹ 𝑨𝑶 = 𝟓𝐜𝐨𝐬𝜽 

 

Perimeter of rectangle 𝑨𝑩𝑪𝑫 = 𝑨𝑩+𝑩𝑪+ 𝑪𝑫+ 𝑨𝑫 

						= 𝟐𝑨𝑩+ 𝟒𝑨𝑶	(∵ 𝑨𝑩 = 𝑪𝑫,𝑩𝑪 = 𝑨𝑫 = 𝟐𝑨𝑶) 

						= 𝟐(𝟓 𝐬𝐢𝐧𝜽) + 𝟒(𝟓 𝐜𝐨𝐬𝜽) 

						= 𝟐𝟎𝐜𝐨𝐬𝜽 + 𝟏𝟎𝐬𝐢𝐧𝜽	(𝐬𝐡𝐨𝐰𝐧) 
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(b) 𝑷 = 𝟐𝟎𝐜𝐨𝐬𝜽 + 𝟏𝟎𝐬𝐢𝐧𝜽 

 

𝑹 = >(𝟐𝟎)𝟐 + (𝟏𝟎)𝟐 

					= √𝟓𝟎𝟎 

					= 𝟏𝟎√𝟓 

 

𝐭𝐚𝐧𝜶 =
𝟏𝟎
𝟐𝟎 

𝜶 = 𝐭𝐚𝐧&𝟏 8	
𝟏𝟎
𝟐𝟎	9 

	= 𝟐𝟔. 𝟓𝟔𝟓𝟎𝟓… 

	= 𝟐𝟔. 𝟔°	(𝟑. 𝐬. 𝐟. ) 

 

∴ 𝑷 = 𝟏𝟎√𝟓𝐜𝐨𝐬(𝜽 − 𝟐𝟔. 𝟔°) 

 

Since 𝑷 = 𝟏𝟔, 

∴ 𝟏𝟔 = 𝟏𝟎√𝟓𝐜𝐨𝐬(𝜽 − 𝟐𝟔. 𝟔°) 

𝐜𝐨𝐬(𝜽 − 𝟐𝟔. 𝟔°) =
𝟏𝟔
𝟏𝟎√𝟓

 

 

𝐁𝐚𝐬𝐢𝐜	𝐀𝐧𝐠𝐥𝐞	𝜶 = 𝐜𝐨𝐬&𝟏 8	
𝟏𝟔
𝟏𝟎√𝟓

	9 

 

𝜽 − 𝟐𝟔. 𝟔° = 𝐜𝐨𝐬&𝟏 8	
𝟏𝟔
𝟏𝟎√𝟓

	9 											𝐨𝐫									𝜽 − 𝟐𝟔. 𝟔° = 𝟑𝟔𝟎° − 𝐜𝐨𝐬&𝟏 8	
𝟏𝟔
𝟏𝟎√𝟓

	9	(𝐫𝐞𝐣𝐞𝐜𝐭𝐞𝐝) 

 

∴ 𝜽 = 𝐜𝐨𝐬&𝟏 8	
𝟏𝟔
𝟏𝟎√𝟓

	9 + 𝐭𝐚𝐧&𝟏 8	
𝟏𝟎
𝟐𝟎	9 

	= 𝟕𝟎. 𝟖𝟕𝟕𝟒𝟑𝟓… 

	= 𝟕𝟎. 𝟗° 

 

(c) 𝐀𝐫𝐞𝐚	𝐨𝐟	𝐫𝐞𝐜𝐭𝐚𝐧𝐠𝐥𝐞 = 𝑨𝑩 ×𝑩𝑪 

= 𝑨𝑩× 𝟐𝑨𝑶	(∵ 𝑩𝑪 = 𝟐𝑨𝑶) 

= 𝟓𝐬𝐢𝐧𝜽 × 𝟐[𝟓 𝐜𝐨𝐬𝜽] 

= 𝟓𝟎𝐬𝐢𝐧𝜽𝐜𝐨𝐬𝜽 

= 𝟐𝟓𝐬𝐢𝐧𝟐𝜽 

 

∴ 𝒌 = 𝟐𝟓 
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Prove that, for all real values of	𝒙 
 

𝐜𝐨𝐭 𝒙
√𝟏 + 𝐜𝐨𝐭𝟐 𝒙

−
𝐜𝐨𝐬𝐞𝐜𝒙

𝐭𝐚𝐧𝒙 + 𝐜𝐨𝐭 𝒙 = 𝟎 

 

 

Solution 

 

𝐜𝐨𝐭 𝒙
√𝟏 + 𝐜𝐨𝐭𝟐 𝒙

−
𝐜𝐨𝐬𝐞𝐜𝒙

𝐭𝐚𝐧𝒙 + 𝐜𝐨𝐭 𝒙 = 𝟎 

 

𝐋𝐇𝐒 =
𝐜𝐨𝐭 𝒙

√𝟏 + 𝐜𝐨𝐭𝟐 𝒙
−

𝐜𝐨𝐬𝐞𝐜𝒙
𝐭𝐚𝐧𝒙 + 𝐜𝐨𝐭 𝒙 

=
𝐜𝐨𝐭𝒙

√𝐜𝐨𝐬𝐞𝐜𝟐 𝒙
−

𝐜𝐨𝐬𝐞𝐜𝒙
𝐭𝐚𝐧𝒙 + 𝐜𝐨𝐭 𝒙 

=
𝐜𝐨𝐭𝒙
𝐜𝐨𝐬𝐞𝐜𝒙 −

𝐜𝐨𝐬𝐞𝐜𝒙

S	𝐬𝐢𝐧𝒙𝐜𝐨𝐬𝒙	T + S	
𝐜𝐨𝐬𝒙
𝐬𝐢𝐧𝒙	T

 

=
S	𝐜𝐨𝐬𝒙𝐬𝐢𝐧𝒙	T

S	 𝟏
𝐬𝐢𝐧𝒙	T

−
S	 𝟏
𝐬𝐢𝐧𝒙	T

8	𝐬𝐢𝐧
𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙
𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝒙 	9

 

= 8	
𝐜𝐨𝐬𝒙
𝐬𝐢𝐧𝒙 ÷

𝟏
𝐬𝐢𝐧𝒙	9 − @	

𝟏
𝐬𝐢𝐧𝒙 ÷

𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙
𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝒙 	A 

= S	
𝐜𝐨𝐬𝒙
𝐬𝐢𝐧𝒙 × 𝐬𝐢𝐧𝒙	T − 8	

𝟏
𝐬𝐢𝐧𝒙 × 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝒙	9 

= 𝐜𝐨𝐬𝒙 − 𝐜𝐨𝐬𝒙 

= 𝟎 

= 𝐑𝐇𝐒	(𝐬𝐡𝐨𝐰𝐧) 
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Solve for 𝒚, between 𝟎° and 𝟑𝟔𝟎° for the equation 
 

𝟒𝐜𝐨𝐬𝐞𝐜𝟐 𝒚 = 𝟕 − 𝐜𝐨𝐭𝟐 𝒚 + 𝟐𝐜𝐨𝐭𝒚 

 

Solution 

 

𝟒𝐜𝐨𝐬𝐞𝐜𝟐 𝒚 = 𝟕 − 𝐜𝐨𝐭𝟐 𝒚 + 𝟐𝐜𝐨𝐭𝒚 

𝟒)𝟏 + 𝐜𝐨𝐭𝟐 𝒚+ = 𝟕 − 𝐜𝐨𝐭𝟐 𝒚 + 𝟐𝐜𝐨𝐭𝒚 

𝟒 + 𝟒𝐜𝐨𝐭𝟐 𝒚 = 𝟕 − 𝐜𝐨𝐭𝟐 𝒚 + 𝟐𝐜𝐨𝐭𝒚 

𝟓𝐜𝐨𝐭𝟐 𝒚 − 𝟐𝐜𝐨𝐭𝒚 − 𝟑 = 𝟎 

 

Let 𝒙 = 𝐜𝐨𝐭𝒚, 

𝟓𝒙𝟐 − 𝟐𝒙 − 𝟑 = 𝟎 

(𝒙 − 𝟏)(𝟓𝒙 + 𝟑) = 𝟎 

𝒙 = 𝟏																	𝐨𝐫														𝒙 = −
𝟑
𝟓 

𝐜𝐨𝐭 𝒚 = 𝟏										𝐨𝐫													 𝐜𝐨𝐭 𝒚 = −
𝟑
𝟓 

𝐭𝐚𝐧𝒚 = 𝟏										𝐨𝐫													 𝐭𝐚𝐧𝒚 = −
𝟓
𝟑 

 

𝐭𝐚𝐧𝒚 = 𝟏 

𝐁𝐚𝐬𝐢𝐜	𝐀𝐧𝐠𝐥𝐞	𝜶 = 𝟒𝟓° 

 

𝒚 = 𝟒𝟓°										𝐨𝐫										𝒚 = 𝟏𝟖𝟎° + 𝟒𝟓° 

= 𝟐𝟐𝟓° 

 

𝐭𝐚𝐧𝒚 = −
𝟓
𝟑 

𝐁𝐚𝐬𝐢𝐜	𝐀𝐧𝐠𝐥𝐞	𝜶 = 𝐭𝐚𝐧&𝟏 8	
𝟓
𝟑	9 

 

𝒚 = 𝟏𝟖𝟎° − 𝐭𝐚𝐧&𝟏 8	
𝟓
𝟑	9 										𝐨𝐫										𝒚 = 𝟑𝟔𝟎° − 𝐭𝐚𝐧&𝟏 8	

𝟓
𝟑	9 

				= 𝟏𝟐𝟎. 𝟗𝟔𝟑𝟕𝟓𝟔…																																			= 𝟑𝟎𝟎. 𝟗𝟔𝟑𝟕𝟓𝟔… 

				= 𝟏𝟐𝟏. 𝟎°(𝟏. 𝐝. 𝐩. ) 																																		= 𝟑𝟎𝟏. 𝟎°(𝟏. 𝐝. 𝐩. ) 
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Topic: Linear Law 

Variables 𝒙 and 𝒚 are related by the equation 𝒚 = 𝒂√𝒙 + 
𝒃
√𝒙

, where 𝒂 and 𝒃 are constants. The table below 

shows measured values of 𝒙 and 𝒚 
 

𝒙 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 
𝒚 𝟓. 𝟕 𝟓. 𝟔 𝟓. 𝟗 𝟔. 𝟐 𝟔. 𝟔 𝟔. 𝟗 

 
(a) On a piece of graph paper, plot 𝒚√𝒙 against 𝒙, using a scale of 𝟐	𝒄𝒎 to represent 𝟏	unit on the 𝒚√𝒙 axis. 

Draw a straight line graph to represent the equation 𝒚 = 𝒂√𝒙 + 
𝒃
√𝒙

 

(b) Use your graph to estimate the value of 𝒂 and of 𝒃 

(c) On the same diagram, draw the line representing the equation 𝒚 = 
𝟑𝒙
√𝒙

 and hence find the value for which 

	𝒙 =
𝒃

𝟑 − 𝒂 

 
Solution 

 

(a) To show the axes, 

𝒚 = 𝒂√𝒙 +
𝒃
√𝒙

 

𝒚√𝒙 = 𝒂𝒙 + 𝒃………(𝟏) 

 

 

 

 

 

𝒀 = 𝒎𝑿+ 𝑪 where 𝒂 is the gradient, and 𝒃 is the 𝒚-intercept  

 

Graph is drawn on the next page 

 

(b) To find 𝒂, we need to find the gradient of the line 

𝒂 =
𝟏𝟒. 𝟖 − 𝟓. 𝟕
𝟓 − 𝟏  

= 𝟐. 𝟐𝟕𝟓… 

= 𝟐. 𝟐𝟖	(𝟑. 𝐬. 𝐟. ) 

 

To find 𝒃, we can read the 𝒚-intercept off the graph 

𝒃 = 𝟑. 𝟑 

 

  

𝒙 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 

𝒚 𝟓. 𝟕 𝟓. 𝟔 𝟓. 𝟗 𝟔. 𝟐 𝟔. 𝟔 𝟔. 𝟗 

𝒚√𝒙 𝟓. 𝟕 𝟕. 𝟗 𝟏𝟎. 𝟐 𝟏𝟐. 𝟒 𝟏𝟒. 𝟖 𝟏𝟔. 𝟗 
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(c) To find the line to sketch 

𝒚 =
𝟑𝒙
√𝒙

 

𝒚√𝒙 = 𝟑𝒙………(𝟐) 

 

Graph is drawn on the next page 

 

To find the value of the following, 

𝒙 =
𝒃

𝟑 − 𝒂 

𝟑𝒙 − 𝒂𝒙 = 𝒃 

𝟑𝒙 = 𝒂𝒙 + 𝒃 

 

We can obtain 𝟑𝒙 = 𝒂𝒙 + 𝒃 by equating Equation (𝟏) and Equation (𝟐). Hence, to find the value 

of the following, we are looking for the intersection point between the 𝟐 lines.  

 

∴ From the graph, 𝒙 = 𝟒. 𝟓 
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Graphical Solution for Linear Law Question 
 
 
  

𝒚√𝒙 

𝒙 𝟏 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 

𝟐 

𝟏𝟔 

𝟏𝟒 

𝟏𝟐 

𝟏𝟎 

𝟖 

𝟔 

𝟒 

𝟐	𝐜𝐦 

Legend 
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Topic: Coordinate Geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solutions to this question by accurate drawing will not be accepted  
In the diagram on the right, 𝑨𝑩 is parallel to 𝑫𝑪 and ∠𝑨𝑩𝑪 = 𝟗𝟎°. Given that the coordinates of 𝑨, 𝑩 and 𝑫 are 
(𝟑, 𝟐), (𝟏𝟐, 𝟓) and (𝟓, 𝟕) respectively, find 
(a) The equations of 𝑩𝑪 and 𝑫𝑪 
(b) The coordinates of 𝑪 
(c) The equation of the perpendicular bisector of 𝑨𝑩 
 
Solution 

 

(a) Since	𝑨𝑩 is parallel to 𝑫𝑪, the gradients for both 𝑨𝑩 and 𝑫𝑪 are the same 

 

𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭	𝐨𝐟	𝑨𝑩 = 𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭	𝐨𝐟	𝑫𝑪 =
𝟓 − 𝟐
𝟏𝟐 − 𝟑 

=
𝟏
𝟑 

 

∴ 𝒚 − 𝟕 =
𝟏
𝟑
(𝒙 − 𝟓) 

𝟑𝒚 − 𝟐𝟏 = 𝒙 − 𝟓 

𝟑𝒚 = 𝒙 + 𝟏𝟔	(𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝐨𝐟	𝑫𝑪) 

 

Since 𝑨𝑩 is perpendicular to 𝑩𝑪, gradient of 𝑨𝑩× gradient of 𝑩𝑪 = −𝟏 

∴ 𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭	𝐨𝐟	𝑩𝑪 =
−𝟏

S	𝟏𝟑	T
 

          = −𝟑 

 

∴ 𝒚 − 𝟓 = −𝟑(𝒙 − 𝟏𝟐) 

𝒚 = −𝟑𝒙 + 𝟒𝟏	(𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧	𝐨𝐟	𝑩𝑪) 
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(b) To find coordinate of 𝑪, we find the intersection of 𝑩𝑪 and 𝑪𝑫 

𝟑𝒚 = 𝒙 + 𝟏𝟔……………(𝟏) 

𝒚 = −𝟑𝒙 + 𝟒𝟏……………(𝟐) 

 

Substitute Equation (𝟐) into Equation (𝟏), 

𝟑(−𝟑𝒙 + 𝟒𝟏) = 𝒙 + 𝟏𝟔 

−𝟗𝒙 + 𝟏𝟐𝟑 = 𝒙 + 𝟏𝟔 

𝟏𝟎𝒙 = 𝟏𝟎𝟕 

𝒙 = 𝟏𝟎. 𝟕 

 

Substitute 𝒙 = 𝟏𝟎. 𝟕 into Equation (𝟐) 

∴ 𝒚 = −𝟑(𝟏𝟎. 𝟕) + 𝟒𝟏 

								= 𝟖. 𝟗 

 

∴ 𝐂𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞𝐬	𝐨𝐟	𝑪 = (𝟏𝟎. 𝟕, 𝟖. 𝟗) 

 

(c) At the perpendicular bisector, it cuts 𝑨𝑩 at the midpoint 

∴ 𝐌𝐢𝐝𝐩𝐨𝐢𝐧𝐭	𝐨𝐟	𝑨𝑩 = 8	
𝒙𝟏 + 𝒙𝟐

𝟐 ,
𝒚𝟏 + 𝒚𝟐

𝟐 	9 

		= 8	
𝟑 + 𝟏𝟐
𝟐 ,

𝟐 + 𝟓
𝟐 	9 

		= 8	
𝟏𝟓
𝟐 ,

𝟕
𝟐	9 

 

Gradient of the perpendicular bisector is the same as the gradient of 𝑩𝑪 

 

∴ Gradient of the perpendicular bisector = −𝟑 

 

∴ 𝒚 −
𝟕
𝟐 = −𝟑8	𝒙 −

𝟏𝟓
𝟐 	9 

𝟐𝒚 − 𝟕 = −𝟔𝒙 + 𝟒𝟓 

𝟐𝒚 = −𝟔𝒙 + 𝟓𝟐 

𝒚 = −𝟑𝒙 + 𝟐𝟔 
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Topic: Further Coordinate Geometry 
The straight line 𝟑𝒙 − 𝒚 + 𝟓 = 𝟎 and the curve 𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙 − 𝟔𝒚 + 𝟓 = 𝟎 intersect 2 points 𝑨 and 𝑩. Find the 
coordinates of 𝑨 and 𝑩. Hence, find the length of 𝑨𝑩 
 
Solution 

 

𝟑𝒙 − 𝒚 + 𝟓 = 𝟎……………(𝟏) 

𝒙𝟐 + 𝒚𝟐 − 𝟐𝒙 − 𝟔𝒚 + 𝟓 = 𝟎……………(𝟐) 

 

From Equation (𝟏),  

𝒚 = 𝟑𝒙 + 𝟓……………(𝟑) 

 

Substitute Equation (𝟑) into Equation (𝟐), 

𝒙𝟐 + (𝟑𝒙 + 𝟓)𝟐 − 𝟐𝒙 − 𝟔(𝟑𝒙 + 𝟓) + 𝟓 = 𝟎 

𝒙𝟐 + 𝟗𝒙𝟐 + 𝟑𝟎𝒙 + 𝟐𝟓 − 𝟐𝒙 − 𝟏𝟖𝒙 − 𝟑𝟎 + 𝟓 = 𝟎 

𝟏𝟎𝒙𝟐 + 𝟏𝟎𝒙 = 𝟎 

𝒙𝟐 + 𝒙 = 𝟎 

𝒙(𝒙 + 𝟏) = 𝟎 

𝒙 = 𝟎										𝐨𝐫										𝒙 = −𝟏 

 

Substitute 𝒙 = 𝟎 into Equation (𝟑), 

𝒚 = 𝟑(𝟎) + 𝟓 

				= 𝟓 

 

∴ 𝐂𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞	𝑨 = (𝟎, 𝟓) 

 

Substitute 𝒙 = −𝟏 into Equation (𝟑), 

𝒚 = 𝟑(−𝟏) + 𝟓 

				= 𝟐 

 

∴ 𝐂𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞	𝑩 = (−𝟏, 𝟐) 

 

∴ 𝐋𝐞𝐧𝐠𝐭𝐡	𝐨𝐟	𝑨𝑩 = >(𝒙𝟏 − 𝒙𝟐)𝟐 + (𝒚𝟏 − 𝒚𝟐)𝟐 

= �)(𝟎) − (−𝟏)+
𝟐 + )(𝟓) − (𝟐)+

𝟐
 

= √𝟏𝟎	𝐮𝐧𝐢𝐭𝐬 
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Topic: Proofs of Plane Geometry 
 
 
 
 
 
 
 
 
 
 
The diagram on the right shows a triangle 𝑷𝑸𝑹 inscribed in a circle and 𝑨𝑩 is a tangent to the circle at 𝑷. 𝑷𝑹 
bisects ∠𝑸𝑷𝑩. Prove that 

(a) 𝑹𝑸 = 𝑹𝑷 
(b) 𝑩𝑹×𝑹𝑷 = 𝑩𝑷𝟐 −𝑩𝑹𝟐 

 
Solution 

 

(a) Let ∡𝑩𝑷𝑹 = 𝜽° 

∡𝑩𝑷𝑹 = ∡𝑷𝑸𝑹	[∡	𝐢𝐧	𝐚𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐞	𝐬𝐞𝐠𝐦𝐞𝐧𝐭] 

Since 𝑷𝑹 bisects ∡𝑸𝑷𝑩, it splits ∡𝑸𝑷𝑩 into 𝟐 equal parts [𝐃𝐞𝐟𝐢𝐧𝐢𝐭𝐢𝐨𝐧	𝐨𝐟	∡	𝐛𝐢𝐬𝐞𝐜𝐭𝐨𝐫] 

∡𝑩𝑷𝑹 = ∡𝑹𝑷𝑸 = 𝜽° 

Hence, in ∆𝑷𝑸𝑹,∡𝑹𝑷𝑸 = ∡𝑷𝑸𝑹 = 𝜽°	[∡	𝐢𝐧	𝐚𝐧	𝐢𝐬𝐨𝐬𝐜𝐞𝐥𝐞𝐬	𝐭𝐫𝐢𝐚𝐧𝐠𝐥𝐞] 

This implies that ∆𝑷𝑸𝑹 is an isosceles triangle 

∴ 𝑹𝑸 = 𝑹𝑷	(𝐬𝐡𝐨𝐰𝐧) 

 

(b) ∡𝑩𝑹𝑷 = 𝟐𝜽°	[𝐞𝐱𝐭𝐞𝐫𝐢𝐨𝐫	∡ = 𝐬𝐮𝐦	𝐨𝐟	𝐢𝐧𝐭𝐞𝐫𝐢𝐨𝐫	𝐨𝐩𝐩𝐨𝐬𝐢𝐭𝐞	∡] 

∡𝑩𝑷𝑸 = 𝟐𝜽°	[∡𝑩𝑷𝑹 = ∡𝑹𝑷𝑸] 

∡𝑩𝑷𝑹 = ∡𝑷𝑸𝑹 = 𝜽°	[∡	𝐢𝐧	𝐚𝐥𝐭𝐞𝐫𝐧𝐚𝐭𝐞	𝐬𝐞𝐠𝐦𝐞𝐧𝐭] 

∴ ∆𝑩𝑷𝑹 is similar to ∆𝑩𝑸𝑷 [𝐀𝐀	𝐬𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲	𝐭𝐞𝐬𝐭] 

𝐁𝐲	𝐬𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲	𝐫𝐚𝐭𝐢𝐨𝐬,
𝑩𝑷
𝑩𝑹 =

𝑷𝑸
𝑹𝑷 =

𝑸𝑩
𝑷𝑩 

𝑩𝑷
𝑩𝑹 =

𝑸𝑩
𝑷𝑩 

⟹𝑩𝑷𝟐 = 𝑸𝑩×𝑩𝑹 

𝑸𝑩 = 𝑩𝑹+𝑹𝑸	(𝐠𝐢𝐯𝐞𝐧) 

∴ 𝑩𝑷𝟐 = (𝑩𝑹+𝑹𝑸) × 𝑩𝑹 

𝑩𝑷𝟐 = 𝑩𝑹𝟐 +𝑹𝑸×𝑩𝑹 

𝑩𝑹×𝑹𝑸 = 𝑩𝑷𝟐 −𝑩𝑹𝟐 

𝐒𝐢𝐧𝐜𝐞	𝑹𝑸 = 𝑹𝑷	[∆𝑷𝑸𝑹	𝐢𝐬	𝐢𝐬𝐨𝐬𝐜𝐞𝐥𝐞𝐬] 

∴ 𝑩𝑹 × 𝑹𝑷 = 𝑩𝑷𝟐 −𝑩𝑹𝟐	(𝐬𝐡𝐨𝐰𝐧)  
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Topic: Calculus 
Show that  

 
𝒅
𝒅𝒙 S

𝒙
𝟏 + 𝟓𝒙T =

𝟏
(𝟏 + 𝟓𝒙)𝟐 

 
Hence, or otherwise, find the area bounded by the 𝒙-axis, the lines 𝒙 = 𝟏, the line 𝒙 = 𝟑, and the curve 

 

𝒚 = 8
𝟒

𝟏 + 𝟓𝒙9
𝟐
 

 
Solution 
 

𝒅
𝒅𝒙S

𝒙
𝟏 + 𝟓𝒙T =

(𝟏 + 𝟓𝒙)(𝟏) − (𝒙)(𝟓)
(𝟏 + 𝟓𝒙)𝟐  

=
𝟏+ 𝟓𝒙 − 𝟓𝒙
(𝟏 + 𝟓𝒙)𝟐  

=
𝟏

(𝟏 + 𝟓𝒙)𝟐 	
(𝐬𝐡𝐨𝐰𝐧) 

 

∴ � 8
𝟒

𝟏 + 𝟓𝒙9
𝟐
𝒅𝒙

𝟑

𝟏
= �

𝟏𝟔
(𝟏 + 𝟓𝒙)𝟐 	𝒅𝒙

𝟑

𝟏
 

		= 𝟏𝟔�
𝟏

(𝟏 + 𝟓𝒙)𝟐 	𝒅𝒙
𝟑

𝟏
 

		= 𝟏𝟔 C
𝒙

𝟏 + 𝟓𝒙D𝟏

𝟑
 

		= 𝟏𝟔 �
(𝟑)

𝟏 + 𝟓(𝟑) −
(𝟏)

𝟏 + 𝟓(𝟏)� 

		=
𝟏
𝟑 
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Peter wishes to make a cone to hold water. He makes a right circular cone, without overlap, of depth 𝒉	𝐜𝐦, 
radius 𝒓	𝐜𝐦 and slant height 𝟏𝟐	𝐜𝐦 
(a) Show that the volume of the cone, 𝑽	𝐜𝐦𝟑 is given by the equation  

 

𝑽 = 𝟒𝟖𝝅𝒉 −
𝟏
𝟑𝝅𝒉

𝟑 

 
(b) Find the value of 𝒉 for which 𝑽 has a stationary value. Find this value of 𝑽 and determine whether it is a 

maximum or minimum 
(c) Given that Peter uses material that is originally in the form of a sector of angle 𝜽	radians. Show that 𝜽 is 

approximately 𝟓. 𝟏𝟑 when 𝑽 is stationary 
 
Solution 

 

(a) By Pythagoras’ Theorem, 

𝒓𝟐 + 𝒉𝟐 = 𝟏𝟐𝟐 

𝒓𝟐 = 𝟏𝟒𝟒 − 𝒉𝟐 

 

∴ 𝐕𝐨𝐥𝐮𝐦𝐞	𝐨𝐟	𝐜𝐨𝐧𝐞 =
𝟏
𝟑𝝅𝒓

𝟐𝒉 

=
𝟏
𝟑𝝅𝒉)𝟏𝟒𝟒 − 𝒉

𝟐+ 

= 𝟒𝟖𝝅𝒉 −
𝟏
𝟑𝝅𝒉

𝟑	(𝐬𝐡𝐨𝐰𝐧) 

 

(b) Since we know that 𝑽 has a stationary value, 𝑽3 = 𝟎 

𝑽 = 𝟒𝟖𝝅𝒉 −
𝟏
𝟑𝝅𝒉

𝟑 

𝑽′ = 𝟒𝟖𝝅 − 𝝅𝒉𝟐 

 

∴ 𝟒𝟖𝝅 − 𝝅𝒉𝟐 = 𝟎 

𝝅𝒉𝟐 = 𝟒𝟖𝝅 

𝒉𝟐 = 𝟒𝟖 

𝒉 = √𝟒𝟖	)𝐫𝐞𝐣 − √𝟒𝟖+ 

			= 𝟔. 𝟗𝟐𝟖𝟐𝟎𝟑… 

			= 𝟔. 𝟗𝟑	𝐜𝐦	(𝟑. 𝐬. 𝐟. ) 

 

∴ 𝑽 = 𝟒𝟖𝝅)√𝟒𝟖+ −
𝟏
𝟑𝝅)√𝟒𝟖+

𝟑
 

= 𝟔𝟗𝟔. 𝟒𝟗𝟖𝟗𝟓𝟓𝟗… 

= 𝟔𝟗𝟔	𝐜𝐦𝟑	(𝟑. 𝐬. 𝐟) 

 



Author: © Ong Kai Wen 
Updated: March 31, 2021 28 

To determine its nature, we perform the second derivative test 

𝑽3 = 𝟒𝟖𝝅− 𝝅𝒉𝟐 

𝑽33 = −𝟐𝝅𝒉 

		= −𝟐𝝅)√𝟒𝟖+ 

		= −𝟒𝟑. 𝟓𝟑𝟏𝟏𝟖𝟒… < 𝟎 

 

Since 𝑽33 < 𝟎, this is a maximum value 

 

(c)  Surface area = 𝝅𝒓𝒍 

= 𝝅S>𝟏𝟒𝟒 − 𝒉𝟐T (𝟏𝟐) 

= 𝝅@�𝟏𝟒𝟒 − )√𝟒𝟖+
𝟐
A (𝟏𝟐) 

= 𝟏𝟐√𝟗𝟔𝝅 

 

∴ 𝐀𝐫𝐞𝐚	𝐨𝐟	𝐬𝐞𝐜𝐭𝐨𝐫 =
𝟏
𝟐𝒓

𝟐𝜽 

𝟏𝟐√𝟗𝟔𝝅 =
𝟏
𝟐 𝒍

𝟐𝜽 

𝟏𝟐√𝟗𝟔𝝅 =
𝟏
𝟐
(𝟏𝟐)𝟐𝜽 

𝜽 = 𝟓. 𝟏𝟑𝟎𝟏𝟗𝟗𝟑𝟐… 

			= 𝟓. 𝟏𝟑	𝐫𝐚𝐝	(𝟑. 𝐬. 𝐟. )	(𝐬𝐡𝐨𝐰𝐧)   
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Evaluate the following 
 

�
𝟐𝒙𝟐 + 𝟏𝟔𝒙

(𝟏 − 𝟑𝒙)(𝟐𝒙 + 𝟏)𝟐 	𝒅𝒙 

 
Solution 

 

To solve this integral, we first need to perform partial fractions 

𝟐𝒙𝟐 + 𝟏𝟔𝒙
(𝟏 − 𝟑𝒙)(𝟐𝒙 + 𝟏)𝟐 =

𝑨
𝟏 − 𝟑𝒙 +

𝑩
𝟐𝒙 + 𝟏 +

𝑪
(𝟐𝒙 + 𝟏)𝟐 

𝟐𝒙𝟐 + 𝟏𝟔𝒙 = 𝑨(𝟐𝒙 + 𝟏)𝟐 +𝑩(𝟏 − 𝟑𝒙)(𝟐𝒙 + 𝟏) + 𝑪(𝟏 − 𝟑𝒙) 

 

𝐋𝐞𝐭	𝒙 = −
𝟏
𝟐	, 

𝟐 8−
𝟏
𝟐9

𝟐
+ 𝟏𝟔8−

𝟏
𝟐9 = 𝑨8𝟐8−

𝟏
𝟐9 + 𝟏9

𝟐
+𝑩@𝟏 − 𝟑8−

𝟏
𝟐9A 8𝟐8−

𝟏
𝟐9 + 𝟏9 + 𝑪@𝟏 − 𝟑8−

𝟏
𝟐9A 

𝟓
𝟐𝑪 = −

𝟏𝟓
𝟐  

𝑪 = −𝟑 

 

𝐋𝐞𝐭	𝒙 =
𝟏
𝟑	, 

𝟐8
𝟏
𝟑9

𝟐
+ 𝟏𝟔8

𝟏
𝟑9 = 𝑨8𝟐8

𝟏
𝟑9 + 𝟏9

𝟐
+𝑩@𝟏 − 𝟑8

𝟏
𝟑9A 8𝟐8

𝟏
𝟑9 + 𝟏9 + 𝑪@𝟏 − 𝟑8

𝟏
𝟑9A 

𝟐𝟓
𝟗 𝑨 =

𝟓𝟎
𝟗  

𝑨 = 𝟐 

 

𝐋𝐞𝐭	𝒙 = 𝟏	, 

𝟐(𝟏)𝟐 + 𝟏𝟔(𝟏) = 𝑨(𝟐(𝟏) + 𝟏)𝟐 +𝑩)𝟏 − 𝟑(𝟏)+(𝟐(𝟏) + 𝟏) + 𝑪)𝟏 − 𝟑(𝟏)+ 

𝟔𝑩 = 𝟔 

𝑩 = 𝟏 

 

∴
𝟐𝒙𝟐 + 𝟏𝟔𝒙

(𝟏 − 𝟑𝒙)(𝟐𝒙 + 𝟏)𝟐 =
𝟐

𝟏 − 𝟑𝒙 +
𝟏

𝟐𝒙 + 𝟏 −
𝟑

(𝟐𝒙 + 𝟏)𝟐 

 

∴ �
𝟐𝒙𝟐 + 𝟏𝟔𝒙

(𝟏 − 𝟑𝒙)(𝟐𝒙 + 𝟏)𝟐 	𝒅𝒙 = ��
𝟐

𝟏 − 𝟑𝒙 +
𝟏

𝟐𝒙 + 𝟏 −
𝟑

(𝟐𝒙 + 𝟏)𝟐� 𝒅𝒙 

= 𝟐�
𝟏

𝟏 − 𝟑𝒙𝒅𝒙 +�
𝟏

𝟐𝒙 + 𝟏𝒅𝒙 − 𝟑�
𝟏

(𝟐𝒙 + 𝟏)𝟐 𝒅𝒙 

= −
𝟐
𝟑 𝐥𝐧

|𝟏 − 𝟑𝒙| +
𝟏
𝟐 𝐥𝐧

|𝟐𝒙 + 𝟏| − 𝟑 �
(𝟐𝒙 + 𝟏)&𝟏

(−𝟏)(𝟐) � + 𝒄 

= −
𝟐
𝟑 𝐥𝐧

|𝟏 − 𝟑𝒙| +
𝟏
𝟐 𝐥𝐧

|𝟐𝒙 + 𝟏| +
𝟑

𝟐(𝟐𝒙 + 𝟏) + 𝒄 


